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Unified Multi-modal Diagnostic Framework
with Reconstruction Pre-training and

Heterogeneity-combat Tuning
Yupei Zhang, Li Pan, Qiushi Yang, Tan Li, and Zhen Chen

Abstract— Medical multi-modal pre-training has revealed
promise in computer-aided diagnosis by leveraging large-
scale unlabeled datasets. However, existing methods based
on masked autoencoders mainly rely on data-level recon-
struction tasks, but lack high-level semantic information.
Furthermore, two significant heterogeneity challenges hin-
der the transfer of pre-trained knowledge to downstream
tasks, i.e., the distribution heterogeneity between pre-
training data and downstream data, and the modality het-
erogeneity within downstream data. To address these chal-
lenges, we propose a Unified Medical Multi-modal Diagnos-
tic (UMD) framework with tailored pre-training and down-
stream tuning strategies. Specifically, to enhance the rep-
resentation abilities of vision and language encoders, we
propose the Multi-level Reconstruction Pre-training (MR-
Pretrain) strategy, including a feature-level and data-level
reconstruction, which guides models to capture the seman-
tic information from masked inputs of different modalities.
Moreover, to tackle two kinds of heterogeneities during the
downstream tuning, we present the heterogeneity-combat
downstream tuning strategy, which consists of a Task-
oriented Distribution Calibration (TD-Calib) and a Gradient-
guided Modality Coordination (GM-Coord). In particular, TD-
Calib fine-tunes the pre-trained model regarding the dis-
tribution of downstream datasets, and GM-Coord adjusts
the gradient weights according to the dynamic optimization
status of different modalities. Extensive experiments on
five public medical datasets demonstrate the effectiveness
of our UMD framework, which remarkably outperforms ex-
isting approaches on three kinds of downstream tasks.

Index Terms— medical multi-modal diagnosis, recon-
struction pre-training, downstream tuning

I. INTRODUCTION

RECENTLY, deep learning techniques have shown ad-
vantages in computer-aided diagnosis, mainly relying

on the knowledge of expert-annotated medical datasets [1],
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[2]. However, collecting high-quality annotations for medical
data is time-consuming and costly, making it difficult to
construct large-scale medical datasets, thereby restricting the
performance of current diagnostic algorithms that benefit from
the expert annotations [3]. Instead, a rational alternative is to
exploit the knowledge of large amounts of unlabeled medical
data effectively, which enhances the diagnostic performance
and broadens the application scenarios of diagnostic algo-
rithms. In particular, self-supervised pre-training [4] provides
a pretrain-finetune paradigm that first performs pre-training on
large-scale unlabeled data for superior representation learning,
and then conducts the fine-tuning on a small amount of labeled
data to adapt to downstream tasks.

Different from medical imaging with uni-modality, multi-
modal medical data (e.g., medical images and text descrip-
tions) can improve diagnostic accuracy for various diseases by
incorporating additional cross-modal knowledge independent
of manual labeling [5]. Multi-modal pre-training [6] aims to
encourage the model to capture semantic information in a self-
supervised manner. By regularizing models to inter-modality
and intra-modality, multi-modal pre-training works can be
broadly categorized into two groups: contrastive learning-
based [7], [8] and masked autoencoder-based methods [9]–
[11]. Contrastive learning-based methods train models to dif-
ferentiate between similar and dissimilar pairs of data samples.
Note that the paradigm of pushing or pulling samples in
contrastive learning requires extremely large batch sizes and
suffers from low efficiency, and the model performances are
highly affected by the tricky selection of positive pairs and
negative pairs [12]. Meanwhile, masked autoencoder-based
methods randomly remove a large proportion of the original
data and encourage the model to reconstruct them [13]. This
pre-training strategy efficiently achieves notable improvement
over various downstream tasks, benefiting from more abundant
supervision [14]. Although advancements have been achieved
by masked autoencoder-based methods, they still have two
major limitations worthy of improving.

The first limitation is the insufficient feature representation
caused by using heuristic reconstruction targets, which may
not fully capture the underlying structure of the data and
result in insufficient pre-training. As illustrated in Fig. 1 (a),
most of the masked autoencoder-based methods [15] simply
employ original data (e.g., image pixels and text tokens) as
prediction targets. However, this strategy can lead to overfitting
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Fig. 1. The comparison of pre-training strategies. Different from the
existing methods (a) that aim for data-level reconstruction, we design
a novel multi-level reconstruction pre-training (b) that enhances the
encoder to learn transferable semantic features by incorporating data-
level and feature-level reconstruction.

of local statistics and high-frequency details that may be less
relevant for data interpretation, such as background, illumina-
tion, and noise disturbance [16]. To address the disadvantages
of data-level reconstruction, recent studies attempt to use
various manually extracted features as reconstruction targets.
LocalMIM [17], MaskFeat [16], and FreMAE [13] incorporate
handcrafted feature descriptors (e.g., SIFT [18], HOG [19],
and Fourier spectrum [13]) of the original data, to enhance the
model’s understanding on high-level features. Nevertheless,
manually designed descriptors with specific strategies are sub-
optimal and limit the model’s generalization to other tasks
and datasets. Rather than heuristically defining original data
and handcrafted feature descriptors as reconstruction targets,
we aim to further guide the model with masked inputs to
reconstruct the high-level features of the original inputs. As
shown in Fig. 1 (b), two networks extract features of masked
and original data respectively, and the target features of
original data are dynamically adjusted by the model to perform
the feature-level reconstruction, and accordingly, the difficulty
of reconstruction task is modulated. By incorporating this
feature-level reconstruction, our method enhances semantic
understanding and improves feature representation learning.

Another critical limitation is that existing pre-training works
ignore the connection between the pre-training and fine-tuning
stages, which hinders the knowledge transfer from pre-training
to downstream tasks [20]. Herein, we formulate this chal-
lenge from two perspectives, i.e., the distribution heterogeneity
between pre-training and downstream data and the modality
heterogeneity within multi-modal downstream data. On the
one hand, pre-training optimizes models to be robust on pre-
training datasets, while the ultimate pursuit of model perfor-
mance is for downstream task scenarios with data distribution
shift [20], [21]. To perform the downstream diagnostic tasks,
current medical pre-training methods [22], as shown in Fig.
2 (a) and (b), directly fine-tune the entire network or the
last linear layer of pre-trained model on the downstream
datasets [6], [23]. However, simple fine-tuning may not be
enough to bridge the distribution gap from pre-training to
downstream datasets, resulting in even worse performance
than specialized expert models on the target downstream task
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Fig. 2. The comparison of fine-tuning strategies. Different from existing
methods (a) and (b) that directly fine-tune the entire network or the final
linear layer, we design a novel heterogeneity-combat downstream tuning
(c) that promotes the encoder to learn semantic features of downstream
data with reconstruction and boosts various downstream tasks.

[24], [25]. On the other hand, during the fine-tuning phase,
existing multi-modal pre-training methods [10], [26] jointly
optimize the modules of different modalities. Nevertheless,
since the rate of convergence varies for different modalities,
this joint optimization strategy may lead the modules to the
sub-optimum [27], where the potential of multi-modal data
hasn’t been fully exploited by multi-modal models [28]. To
address the above issues, we adapt the model for the specific
downstream dataset through the same reconstruction task as in
the pre-training stage, as shown in Fig. 2 (c), to enhance the
model’s awareness toward the target distribution. Additionally,
we present a dynamic gradient weighting mechanism for dif-
ferent modalities to ensure coordinated multi-modal training.
By these means, our model can more effectively leverage pre-
trained knowledge and adaptively balance the optimization
of multiple modalities, ultimately improving performance on
downstream medical diagnosis tasks.

In this work, we propose the Unified Medical Multi-modal
Diagnostic (UMD) framework with Multi-level Reconstruction
Pre-training (MR-Pretrain) and heterogeneity-combat down-
stream tuning strategies, which leverage the vast amounts of
unlabelled medical data in pre-training, and bridge gaps in
terms of distribution and modality. In addition to the data-level
reconstruction supervision, we strengthen the constraints on
the encoder by performing a novel feature-level reconstruction.
Specifically, we feed the original data into a teacher encoder
and the masked data into a student encoder, where the student
is supervised with the features extracted by the teacher in the
feature space. This design enhances the encoder’s represen-
tation learning for high-level semantic information and thus
improves the generalization ability of pre-training. Moreover,
to combat the inter-dataset distribution heterogeneity and inter-
modality optimization interference, we propose a task-oriented
distribution calibration (TD-Calib) module and a gradient-
guided modality coordination (GM-Coord) module. TD-Calib
calibrates the model trained on the pre-training datasets
with instances from the downstream datasets in a mask-
and-reconstruct manner, and GM-Coord dynamically adjusts
the gradient weights of different modalities for coordinated
multi-modal tuning. By enhancing the model’s understanding
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of high-level semantic information with masked inputs and
bridging the gap between pre-training and fine-tuning, the
proposed UMD framework achieves superior performance on
three kinds of downstream tasks. Our contributions are four-
fold:

• To perform a more accurate diagnosis using medical
multi-modal data, we introduce UMD, a novel unified
framework that incorporates data-level and feature-level
reconstruction to improve representation learning and
heterogeneity-combat downstream tuning to bridge gaps
in terms of distribution and modality.

• To promote representation capabilities, we devise the
MR-Pretrain strategy to enhance the multi-modal en-
coders with feature-level reconstruction in addition to
data-level reconstruction. The MR-Pretrain feeds masked
multi-modal samples into the student model to reconstruct
target feature representations obtained from the teacher
model with the original inputs, enabling the model to
learn richer transferable multi-modal representations.

• To improve the transfer ability of the pre-trained
model to various downstream tasks, we introduce the
heterogeneity-combat downstream tuning, composed of
two simple but effective modules, i.e., TD-Calib and GM-
Coord. As such, our UMD framework can effectively
bridge the distribution gap between pre-train data and
downstream data, and thoroughly unleash the potential
of multi-modal data.

• We conduct experiments on three kinds of downstream
tasks using five public multi-modal medical datasets. The
results demonstrate the effectiveness of our UMD frame-
work, which outperforms the state-of-the-art methods by
a significant margin on all datasets.

II. RELATED WORK

A. Multi-Modal Pre-Training

Inspired by the great success achieved in uni-modal pre-
training (e.g., natural language processing and computer vi-
sion), such as BERT [29] and MAE [15], the multi-modal pre-
training has gained increasing attention in recent years [30].
The multi-modal pre-training aims to learn universal transfer-
able representations from large-scale unannotated multi-modal
data. Generally, the inter-view and intra-view perspectives on
the image and text lead to two main streams of pretext design
for multi-modal pre-training, i.e., contrastive learning [7], [8]
and masked multi-modal modeling [9]–[11].

Contrastive learning trains models to maximize the sim-
ilarity between positive pairs and minimize the similarity
among negative pairs. Based on this simple idea, a large
number of studies extend contrastive learning to perform
self-supervised pre-training [7]. Despite its effectiveness in
learning useful representations, contrastive learning suffers
from two drawbacks. Firstly, it demands a significant number
of negative samples, which can be resource-intensive [11].
Secondly, it relies on the complex manual definition of positive
and negative sample pairs [16].

Masked autoencoder is another type of paradigm for vision
and language pre-training, which masks a portion of the input

data and learns to recover the removed content [15]. This
mask-and-reconstruct strategy significantly reduces computa-
tional costs and encourages the model to learn data representa-
tions in a self-supervised manner [29]. Specifically, MAE [15]
demonstrated the self-supervised learning capability of masked
autoencoders in computer vision by adopting the mask-and-
reconstruct pretext which masked image patches. Singh et al.
[9] proposed unified pre-training schemes for the vision and
language data by applying the mask-and-reconstruct to each
modality. MaskVLM [10] improved the existing vision-and-
language pre-training approaches by alternately masking one
modality to enhance the cross-modality alignment. DeepMIM
[31] boosted the masked image modeling by the deep super-
vision of intermediate features to drive the shallower layers to
learn meaningful representations.

As discussed above, most existing masked autoencoders set
the original inputs as reconstruction targets. However, this
data-level reconstruction strategy may cause overfitting to the
low-level local statistics and high-frequency details, which
can impede the model from capturing high-level semantic
features from the inputs [16]. To address this challenge, some
recent studies attempt to improve feature-level supervision
on the intermediate outputs of the encoders. For instance,
MaskFeat [16] explicitly utilized the handcrafted image de-
scriptors (e.g., HOG) as reconstruction targets to enhance
feature representations. Wang et al. [17] proposed a multi-
scale reconstruction approach, which encourages the encoder
to predict various handcrafted image descriptors at different
layers. Yet, these methods bring strong assumptions on the
reconstruction targets, which are biased and hard to be gen-
eralized due to the manual inputs. Different from previous
works, our UMD framework first performs pre-training with
feature-level reconstruction to enhance feature representation
learning, and then promotes fine-tuning stage through the
tailored heterogeneity-combat downstream tuning.

B. Medical Multi-Modal Pre-Training

The medical multi-modal pre-training aims to improve the
performance of diagnostic models by leveraging large-scale
unlabeled multi-modal medical datasets [6]. On the one hand,
unlike general computer vision datasets, medical datasets are
naturally multi-modal, containing diverse imaging types and
text data (e.g., diagnosis reports) [32], [33]. On the other hand,
medical data requires manual annotations of human experts,
which is time-consuming and costly [3]. Therefore, there is
a high demand for developing a self-supervised multi-modal
pre-training method that can utilize unannotated medical data
to improve the performance of existing deep learning models.

To achieve this goal, recent studies have explored self-
supervised pre-training on medical datasets. For example,
Li et al. [23] validated the effectiveness of medical multi-
modal pre-training by evaluating four pre-trained vision-and-
language models on medical datasets. To improve the per-
formance of visual question-answering models, Khare et al.
[34] tokenized the medical images using convolutional neural
networks to jointly pre-train both vision and language encoders
under masked reconstruction modeling. Zhang et al. [35]
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utilized contrastive learning to pre-train models on paired
medical images and texts, and evaluated pre-trained models
on three medical imaging tasks, i.e., image classification, zero-
shot image-image retrieval, and zero-shot text-image retrieval.
Endo et al. [36] pre-trained a model on public datasets for gait
movement forecasting, which can be further applied to clinical
data to predict the severity of gait impairment for diagnosing
Parkinson’s disease. Moon et al. [37] presented a multi-modal
attention masking approach to maximize generalization ability
for both medical vision-language understanding tasks. Chen
et al. [6] proposed a transformer-based pre-training model
via multi-modal masked autoencoders, and achieved promising
results on multiple multi-modal medical downstream tasks. On
this basis, our UMD framework elaborately investigates the
entire process from pre-training to fine-tuning, and leverages
the characteristics of multi-modal medical data to facilitate the
performance of medical diagnoses.

III. METHODOLOGY

A. Overview
Our UMD framework contains two stages, i.e., MR-Pretrain

in Fig. 3 to enhance the general feature representation and
the heterogeneity-combat downstream tuning in Fig. III-B.2
to boost the fine-tuning performance on various downstream
tasks. In the MR-Pretrain stage, besides the widely-applied
data-level reconstruction [10], we propose the feature-level
reconstruction by a dual-stream workflow to encourage trans-
ferable representation learning from high-level features. In
the heterogeneity-combat downstream tuning stage, the TD-
Calib bridges the distribution gap between the pre-training and
downstream datasets, and the GM-Coord adjusts the gradient
optimization of different modalities, thereby facilitating the
performance of downstream tasks.

1) Model Architecture: Multi-modal encoder E comprises
a student multi-modal encoder E(θ) and a teacher multi-modal
encoder E(θ̄). They share the same network architecture, and
each of them consists of a vision transformer (ViT)-based [7]
vision encoder EI , a transformer-based [38] language encoder
ET , and a cross-attention-based multi-modal fusion module
F [6]. For the multi-modal fusion module, we use two Nm-
layer transformer models. Each model includes a self-attention
layer for intra-modality learning, a cross-attention layer for
inter-modality learning, and a feed-forward layer. The weights
of teacher model E(θ̄) is updated by the exponential moving
average (EMA) [39] of the weights from student model E(θ).
Decoder D comprises a vision decoder DI and a language
decoder DT , and is designed to reconstruct the original image
and text using the latent representations obtained through
multi-modal fusion F . Vision decoder DI aims to reconstruct
raw pixels that contain low-level textural information, while
language decoder DT is expected to recover the text tokens
that represent high-level semantic information. To this end, we
employ a transformer [40] as the vision decoder for the low-
level reconstruction, and the multi-layer perceptron (MLP) is
utilized as the language decoder.
Downstream task head H for visual question-answering and
image-text classification tasks, is a fully connected neural net-
work with a layer normalization [41] and a GELU activation

[42]. For the image-text retrieval task, we utilize a linear layer
as the head.

2) Dataflow: The input of our UMD framework consists of
two streams: the image-text pair (I, T ) and the correspond-
ing masked pair (Imask, Tmask). The I ∈ RH×W×C and
T ∈ RL represent the image and text, where H and W are
image resolution, C is the number of image channels, and
L is the length of a text sample. Following M3AE [6], we
employ data sequentialization, linear projection embeddings,
random masking, and position embeddings during the data
preprocessing. A start-of-sequence token embedding and a
special boundary token embedding are appended to the text
sequence to indicate the beginning and end of the input
text [40]. The vision EI and language ET encoder extract
contextual representations of the image HI and text HT from
the image-text pair (Imask, Tmask). We further fuse HI and
HT using the multi-modal fusion module F , which produces
multi-modal representations ZI = [zICLS; z

I
1 ; z

I
2 ; ...; z

I
nI ] for

vision and ZT = [zTCLS; z
T
1 ; z

T
2 ; ...; z

T
nT ; z

T
SEP] for language,

where nI and nT are the numbers of image patches and text
tokens, respectively. To perform data-level reconstruction of
the MR-Pretrain stage and TD-Calib of the heterogeneity-
combat downstream tuning stage, we concatenate the average
embeddings of ZI and ZT , and feed the resulting vector into
D. For GM-Coord, we feed the concatenated embeddings into
H, for downstream tasks’ prediction.

B. Multi-Level Reconstruction Pre-Training
To promote the representation capabilities of the multi-

modal encoders, we propose a multi-level reconstruction
method in Fig. 3, named MR-Pretrain, containing a novel
feature-level reconstruction loss and a data-level reconstruction
loss, encouraging the encoders to learn the high-level semantic
representation from the unlabeled medical data.

1) Data-Level Reconstruction: The information density of
language is poles apart from vision [6], [15], where the
language is highly informative, and the vision is instead spa-
tially redundant. To eliminate the redundancies of vision and
language while enabling the model to acquire valuable features
from both vision and language in data-level reconstruction, we
randomly mask image I with a 75% ratio and mask text T
with a 15% masking ratio. Then we recover the masked inputs
using the remaining data. The masked image modeling (MIM)
loss and masked language modeling (MLM) loss are defined
as follows:

LMIM =
1

N

N∑
n=1

(YMIM − D(E (Imask
n , Tmask

n ; θ))2, (1)

LMLM = − 1

N

N∑
n=1

logPMLM(YMLM | Imask
n , Tmask

n ), (2)

where N is the total number of samples, YMIM is the raw pixel
values of masked image patches, YMLM represents the labels
of masked text tokens, and PMLM represents the likelihood of
each label given the input image-text pair. By supervising the
model to reconstruct details from masked image-text pairs, this
data-level reconstruction task encourages the model to perceive
low-level textual information without manual labels.
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Fig. 3. Our MR-Pretrain exploits generalizable features from a large-scale unlabeled pre-training dataset in a dual-stream workflow. Besides the
data-level reconstruction, we perform the feature-level reconstruction pretext task of features to encourage transferable representation learning.

2) Feature-Level Reconstruction: Data-level reconstruction
reduces the demand for data labeling, but entirely relying
on this method may cause the model to overfit to the fine
details of the input, hindering its ability to learn higher-level
representations [13], [17]. To address this problem, we propose
the feature-level reconstruction that directly supervises the
model in the feature space, encouraging the model to capture
high-level semantic representations. Specifically, we employ a
teacher model E(θ̄) to extract the representations from original
pairs (I, T ) and a student model E(θ) for the masked image-
text pairs (Imask, Tmask). The outputs of the multi-modal
encoder model contain two vectors, ZI for the image and ZT

for the text. Accordingly, the outputs of the student model and
teacher model are defined as follows:

ZI
n(θ), Z

T
n (θ) = E (Imask

n , Tmask
n ; θ),

ZI
n(θ̄), Z

T
n (θ̄) = E (In, Tn; θ̄),

(3)

where n represents the index of the paired samples. Following
[43], we apply two linear layers hI and hT as projection heads
to map the vision feature ZI

n and language feature ZT
n to a

lower-dimensional latent space. The feature reconstruction loss
for the image LFeaMIM and text LFeaMLM can be formulated
as follows:

LFeaMIM =
1

N

N∑
n=1

(hI(ZI
n(θ̄))− hI(ZI

n(θ)))
2,

LFeaMLM =
1

N

N∑
n=1

(hT (ZT
n (θ̄))− hT (ZT

n (θ)))
2,

(4)

where N is the number of pre-training samples. Different
from the data-level reconstruction [6], [10] that encourages the
model to concentrate on the low-level details, the proposed
multi-modal feature reconstruction LFeaMIM and LFeaMLM

guides the model to capture high-level semantic information
from masked inputs. The teacher model weights θ̄ are updated

under the exponential moving average [39] of the student
model weights θ, as follows:

θ̄t = λθ̄t−1 + (1− λ)θt, (5)

where λ is the smoothing factor of teacher model θ̄ updating,
and t indicates the current iteration number. Given the full
view of the input modalities, the teacher encoder E(θ̄) can
provide global feature-level guidance for the student encoder
E(θ), which encourages the student encoder E(θ) to capture
high-level semantic information during the pre-training.

Furthermore, our MR-Pretrain incorporates the image-text
matching (ITM) objective, a popular approach in vision-
language understanding that aims to distinguish if a pair of
image and text is matched. As such, our MR-Pretrain with
ITM is effective for learning representations and improving
the downstream performance [44]:

LITM = − 1

N

N∑
n=1

logPITM(YITM | In, Tn), (6)

where PITM is the probability distribution obtained by apply-
ing a softmax function to the ITM decoder that consists of a
linear layer, and YITM represents the binary label for the ITM
task. The value of one indicates a matched image-text pair,
while zero indicates a mismatched pair. By promoting a joint
representation of image and text inputs, our model enriches
the correlation information between the modalities, thereby
boosting the downstream tasks.

3) MR-Pretrain Objective: The total MR-Pretrain objective
Lpretrain consists of five losses, i.e., LMIM, LMLM, LFeaMIM,
LFeaMLM, and LITM, which is calculated as follows:

Lpretrain = (1− α)(LMIM + LMLM) +

α(LFeaMIM + LFeaMLM ) + LITM,
(7)

where α is a trade-off factor to balance the data-level and
feature-level reconstruction. By optimizing Eq. (7), the model
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Fig. 4. Our heterogeneity-combat tuning facilitates medical diagnosis on downstream datasets. (a) The TD-Calib firstly calibrates the student multi-
modal encoder to bridge the distribution gap, and then (b) the GM-Coord performs supervised fine-tuning to balance the modality optimization. For
ease of understanding, we elaborate on the case of ρT > 1, where the gradient of the language modality should be modulated, as shown in (b).

is pre-trained to learn image and text representation at multiple
levels. In this way, our MR-Pretrain can improve the model’s
transferable representation for diverse downstream tasks, by
leveraging the unlabeled pre-training data comprehensively.

C. Heterogeneity-Combat Downstream Tuning
The current pretrain-finetune paradigm [4], [16] directly

fine-tunes the pre-trained model on the downstream datasets
as illustrated in Fig. 2. However, this straightforward fine-
tuning approach neglects the heterogeneity between pre-
training and downstream datasets, as well as the modality
heterogeneity within downstream optimization, resulting in
sub-optimal performance on the specific dataset. To tackle
these two challenges, we propose the heterogeneity-combat
downstream tuning in Fig. III-B.2, including TD-Calid to
automatically calibrate the pre-trained encoder for a particular
downstream dataset, and GM-Coord to dynamically balance
the optimization of different modalities.

1) Task-Oriented Distribution Calibration: The distribution-
heterogeneity inherently exists in pre-training and downstream
data. A well-trained encoder carries abundant knowledge from
the pre-training dataset, while how to efficiently transfer this
pre-trained knowledge is an open-air question. Compared with
the direct fine-tuning that is insufficient as the incoherent
knowledge transfer from pre-training to downstream tuning,
our TD-Calib module aims for a coherent transfer, which
bridges the data distribution gap between the pre-training and
the downstream tuning. To this end, the pre-trained model is
further trained on the downstream datasets by reconstructing
the masked multi-modal data, as shown in Fig. III-B.2 (a).
This enables the model to adapt to the new distributions

without explicit instruction of the ground truth, thus facilitating
downstream objectives. Thus, we introduce the consistent pre-
training objectives as TD-Calib training objectives, as follows:

θ∗, θ∗1 , ... , θ
∗
S = argmin

θ,θ1,...,θS

S∑
s=1

Ls(Ys,Ds(E(Imask, Tmask; θs))),

(8)
where Ys represents the reconstruction targets of the masked
image or text inputs, Ls is the training objectives of the TD-
Calib module, S is the total number of training objectives
that are empirically set as 4, and s is the index of each
training objective. In contrast to directly fine-tuning, our model
optimized with Eq. (8) not only adapts to the data distribution
of the downstream domain, but also leverages the pre-trained
knowledge to a greater extent.

2) Gradient-Guided Modality Coordination: Due to the
modality heterogeneity, the optimization imbalance phe-
nomenon exists in the joint training of multi-modal data,
where the dominant modality suppresses the optimization of
the other modalities during training. This phenomenon impacts
the performance of medical multi-modal downstream tasks,
such as visual question-answering and image-text classification
tasks. To tackle this problem, we introduce the GM-Coord
module to coordinate the optimization of each modality under
the guidance of gradient changes, as illustrated in Fig. III-
B.2 (b). During the GM-Coord, the contribution discrepancy
among images and texts toward the learning objective is
continuously monitored. The information is then utilized to
adaptively modulate the gradients, thereby allocating more
significant optimization updates to the suppressed modality.

For each multi-modal downstream task, the GM-Coord
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calculates the contribution CI of vision modality and CT of
language modality. We split the task head H = [HI ,HT ] to
separately measure the contribution of each modality, which
is supervised by downstream task supervision. The calculation
can be formulated with u ∈ {I, T} for vision or language
modality, as follows:

ZI , ZT = E(I, T ; θ), (9)

Cu = softmax(Hu(Zu))[j], (10)

where Cu and Hu represent the contribution and task head for
a specific modality respectively, and [j] denotes a selection
operator on the j-th class and j means the ground truth. In
this way, CI means the prediction score on the ground truth
class for the vision modality and CT means the prediction
score on the ground truth class for the language modality. To
quantify the optimization status of each modality, ρI and ρT

are computed by the modality contribution, as follows:

ρI =

∑
CI∑
CT

, ρT =

∑
CT∑
CI

. (11)

Then, we modulate the gradient of the modality that is
optimizing fast. Taking the language modality as an example,
the coordination coefficient kT is as follows:

kT =

{
1 − tanh(β · ρT ), ρT > ρI

1, others
(12)

where the factor β controls the degree of modulation and
is set to 0.1. As such, the coordination coefficient kT < 1
when the optimization rate of one modality is higher than
another, resulting in a reduction in the optimization speed of
the faster modality. Finally, we integrate the coefficient kT into
optimization together with Gaussian noise σ(θ) ∼ N (0,Σ2

∇θ),
where Σ2

∇θ represents the variance of the parameters’ gradient,
to improve the generalization ability. The modulated gradient
g̃ of GM-Coord is as follows:

g̃(θT ) ← kT g̃(θT ) + σ(θT ). (13)

Similarly, the gradients of vision modality g̃(θI) are also mod-
ulated following Eq. (12) and Eq. (13) if vision optimization is
faster than the language optimization. As such, the modulated
gradients lead to balanced optimization of multi-modal data,
thereby facilitating the performance of downstream tasks.

D. Algorithm Pipeline
The training pipeline of our UMD framework is summa-

rized in Algorithm 1, which includes the MR-Pretrain and
heterogeneity-combat downstream tuning. We first perform the
MR-Pretrain using Eq. (7) on unannotated data, and obtain
a pre-trained model that can generate general feature repre-
sentations. Then, we conduct the TD-Calib in heterogeneity-
combat downstream tuning using Eq. (8), which promotes the
pre-trained model’s smooth adaptation to downstream datasets.
Finally, we perform the optimization of GM-Coord together
with downstream objectives, enabling the model to capture
semantic features of multi-modal data. The source code is
available at https://github.com/helenypzhang/UMD.

Algorithm 1 The pipeline of UMD

Input: Paired images and texts for Pre-training {IP , TP } and for
Downstream Tuning {ID, TD}; Model parameters Θ = {θ} ∪
{θs}Ss=1; Random masking MI(·) for images and MT (·) for
texts.

Output: The trained optimal parameters Θ∗

{MR-Pretrain}
1: while Θ doesn’t reach convergence do
2: for each I and T ∈ {IP , TP } do
3: Imask ←MI(I); T

mask ←MT (T )
4: Minimize Lpretrain using Eq. (7)
5: end for
6: end while
7: The E ◦ D is well-trained for MR-Pretrain stage.
{TD-Calib}

8: while Θ doesn’t reach convergence do
9: for each I and T ∈ {ID, TD} do

10: Imask ←MI(I); T
mask ←MT (T )

11: Minimize
∑S

s=1 Ls(Ys,Ds(E(Imask, Tmask; θ))
12: end for
13: end while
14: The E ◦ D is well-trained for TD-Calib module.
{GM-Coord}

15: while Θ doesn’t reach convergence do
16: for each I and T ∈ {ID, TD} do
17: Minimize LCE(Y,H(E(I, T ; θ))
18: Calculate Cu, ρu, ku, g̃(θu) in Eq. (10), (11), (12), (13)
19: end for
20: end while
21: The E ◦ H is well-trained for GM-Coord module.

IV. EXPERIMENT

A. Dataset

We pre-train the model in our UMD framework using
MedICaT [33] and ROCO [32] datasets and conduct the
fine-tuning experiments on three downstream tasks, including
three visual question-answering (VQA) datasets, one image-
text retrieval dataset, and one image-text classification dataset.

1) Pre-Training Datasets: In our experimental setup, we
conduct self-supervised pre-training on two datasets, i.e., Med-
ICaT [33] and ROCO [32] dataset.
MedICaT dataset [33] comprises more than 217,000 medical
images and their corresponding captions and inline textual
references. Following M3AE [6], we randomly allocate 1,000
samples for test, 1,000 for validation, and the remaining data
for training purposes.
ROCO dataset [32] contains more than 81,000 medical
radiology images, encompassing a variety of imaging modal-
ities such as Computed Tomography (CT), X-ray, ultrasound,
fluoroscopy, angiography, mammography, positron emission
tomography, and Magnetic Resonance Imaging (MRI). Each
image is accompanied by a corresponding caption. We follow
the dataset splits in ROCO [32], with over 65,000 radiology
images to the training set, over 8,000 radiology images to the
validation set, and over 8,000 radiology images to the test set.

2) Downstream Tuning Datasets: We evaluate the effective-
ness of our pre-training approach by conducting experiments
on the VQA, image-text retrieval tasks, and image-text classifi-
cation, utilizing the official split of each dataset in downstream
experiments. For the VQA task, we select three public datasets,

https://github.com/helenypzhang/UMD


8 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

TABLE I
COMPARISON WITH STATE-OF-THE-ART ALGORITHMS ON THREE MEDICAL VQA DATASETS REGARDING ACCURACY METRIC. BEST

AND SECOND RESULTS ARE HIGHLIGHTED WITH BOLD AND UNDERLINE.

Methods VQA-RAD SLAKE VQA-Med-2019

Open Closed Overall Open Closed Overall Overall

MFB [45] 14.50 74.30 50.60 72.20 75.00 73.30 -
SAN [46] 31.30 69.50 54.30 74.00 79.10 76.00 -
BAN [47] 37.40 72.10 58.30 74.60 79.10 76.30 -

MEVF-BAN [25] 49.20 77.20 66.10 77.80 79.80 78.60 77.86
CPRD-BAN [48] 52.50 77.90 67.80 79.50 83.40 81.10 -

MAE [15] 67.04 77.94 73.61 77.21 82.21 79.17 73.60
CLIP [7] 64.80 79.78 73.84 78.45 84.62 80.87 76.80
FLIP [11] 65.92 78.31 73.39 80.47 84.86 82.19 78.40
M3AE [6] 67.23 83.46 77.01 80.31 87.82 83.25 79.87
UMD 68.16 85.66 78.71 82.17 88.70 84.73 80.53

i.e., VQA-RAD [49], SLAKE [50], and VQA-Med-2019 [51].
Moreover, the ROCO dataset [32] and MELINDA dataset [52]
are utilized in image-text retrieval and image-text classification
tasks, respectively.
VQA-RAD dataset [49] includes 315 images, consisting of
104 axial single-slice CTs or MRIs for head, 107 X-rays for
chest, and 104 axial CTs for abdomen, each accompanied by
corresponding captions. There are over 3.5K visual questions
in VQA-RAD, including open-ended and closed-ended answer
types. In particular, there are 3,064 question-answer pairs in
training set, 451 question-answer pairs in validation set, and
451 question-answer pairs in test set.
SLAKE dataset [50] comprises 642 multi-modal images cov-
ering 12 diseases and 39 organs of the human body to ensure
dataset diversity. The question-answer pairs are 14K. Both
open-ended and closed-ended answer types are included in
the SLAKE and VQA-RAD datasets, determined by whether
the answer choices are limited or not. In particular, the dataset
is divided into training, validation, and test sets with the ratio
of 75%, 15% and 15%.
VQA-Med-2019 dataset [51] is composed of 4,200 radiolog-
ical images and 15,292 question-answer pairs. The dataset is
split into training set with 3,200 images, validation set with
500 images, and test set with 500 images.
ROCO dataset [32] is utilized on the image-text retrieval task.
The image-text retrieval task comprises two subtasks: image-
to-text retrieval and text-to-image retrieval. The former aims
to retrieve the most relevant texts based on the given image,
while the latter aims to retrieve the most relevant images based
on the given text.
MELINDA dataset [52], which contains 2,833 figures paired
with corresponding detailed sub-figures and sub-captions, is
utilized on the image-text classification task. The dataset is
split into train, validation, and test sets, with the ratio of 80%,
10% and 10%.

B. Implementation Details
Our experiments are implemented with the PyTorch Light-

ning library [55] on three NVIDIA A100 PCIe 40 GB GPUs.
Details of each task are elaborated as follows.

1) Multi-Level Reconstruction Pre-Training: For MR-
Pretrain, we train E ◦ D end-to-end. We start from the

CLIP-ViT-B model [7] as the vision encoder, the RoBERTa-
base [38] as the language encoder, with the multi-modal
fusion module provided by M3AE [6]. The multi-modal
module consists of 6 Transformer layers with a hidden state
dimension of 768 and 12 heads. We use AdamW optimizer
[56] to train the models for 100,000 steps, with a learning
rate of 1 × 10−5 for the uni-modal encoders and 5 × 10−5

for the multi-modal fusion module. We set the warm-up ratio
to 10%, with a linear learning rate scheduler after warm-up.
To resize each image, we use a center-crop method with a
size of 314× 314. The trade-off factor α in MR-Pretain is set
as 0.5. The smoothing factor λ of EMA is 0.995 for weight
updating.

2) Heterogeneity-combat Downstream Tuning: For TD-
Calib, we fine-tune the E ◦D end-to-end. In order to bridge the
data distribution gap between pre-training and fine-tuning, we
conduct TD-Calib-guided downstream tuning. Specifically, we
initialize the multi-modal encoder with the pre-trained weights,
and feed images and texts to the model to further pre-train
both E and D. The masking ratio is set to 75% for images
and 15% for texts. Moreover, the warm-up ratio is 10%, with
a linear learning rate scheduler used after warm-up steps. We
use AdamW as the optimizer with a weight decay of 0.01
for all downstream tasks. The initial learning rate for VQA-
RAD, SLAKE, VQA-Med-2019, ROCO, and MELINDA is
set to 1× 10−5, 5× 10−6, 5× 10−6, 1× 10−5 and 1× 10−5,
respectively, and linearly decay to zero during training.

For GM-Coord, we fine-tune E ◦H end-to-end. Specifically,
we further fine-tune the multi-modal encoder E optimized
by the TD-Calib module under different downstream tasks,
together with the downstream task-specific head H. For each
downstream task, we guarantee the fairness of the experiment
by adopting the same H for different comparison methods.
We utilize the AdamW optimizer with an initial learning
rate of 5 × 10−6, a warm-up ratio of 10%, and a linear
decay during training for VQA-Med-2019, while for other
downstream datasets, we use cosine decay. The weight decay
is set to 0.01 for SLAKE and MELINDA datasets, and 0.1 for
VQA-RAD, VQA-Med-2019 and ROCO datasets.

3) Evaluation Metric: To conduct a comprehensive evalu-
ation, we analyze diverse performance metrics on different
downstream tasks. We follow the previous study [6] to adopt
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TABLE II
COMPARISON WITH STATE-OF-THE-ART ALGORITHMS ON MEDICAL IMAGE-TEXT RETRIEVAL TASK ON ROCO DATASET.

BEST AND SECOND RESULTS ARE HIGHLIGHTED WITH BOLD AND UNDERLINE.

Methods Text-to-image retrieval Image-to-text retrieval

R@1 R@5 R@10 R@1 R@5 R@10

ViT+BERT [53] 5.25 15.85 25.85 6.85 21.25 31.60
ViLT [54] 9.75 28.95 41.40 11.90 31.90 43.20
METER [53] 11.30 27.25 39.60 14.45 33.30 45.10

MAE [15] 4.35 17.96 28.96 4.95 18.31 28.06
CLIP [7] 14.41 39.67 54.68 17.61 42.92 57.98
FLIP [11] 17.66 46.62 61.03 17.46 45.57 61.53
M3AE [6] 22.20 52.50 66.65 22.90 51.05 65.80
UMD 23.21 54.28 67.88 24.39 54.27 68.97

TABLE III
COMPARISON WITH STATE-OF-THE-ART ALGORITHMS ON MEDICAL

IMAGE-TEXT CLASSIFICATION TASK ON MELINDA DATASET. BEST AND

SECOND RESULTS ARE HIGHLIGHTED WITH BOLD AND UNDERLINE.

Modalities Methods Accuracy

Image-only ResNet-101 [57] 63.84

Text-only
LSTM [58] 59.20
RoBERTa [38] 75.40
SciBERT [59] 77.70

Multi-modal

NLF [52] 76.60
SAN [46] 72.30
ViLBERT [60] 78.60
MAE [15] 78.03
CLIP [7] 77.16
FLIP [11] 77.36
M3AE [6] 78.50
UMD 79.58

the accuracy for the VQA and image-text classification tasks,
and Recall@K with K=1, 5 and 10 for the image-text retrieval
task, respectively. In VQA and image-text classification, the
Overall term specifically refers to the micro-average accuracy
of both open-ended and closed-ended questions. In addition,
the Recall@K, commonly used in information retrieval tasks,
is an evaluation metric that measures the proportion of relevant
items that are retrieved in the top K results. In other words,
the Recall@K measures how many of the relevant items are
actually retrieved in the top K results. We conduct experiments
for Recall@K with K=1, 5 and 10, which represent the
proportion of relevant items retrieved in different predictions.

C. Downstream Experiments

1) Medical Visual Question-Answering: The VQA is a multi-
modal task that requires both images and questions as input,
and is expected to answer questions about medical images. The
VQA questions can belong to either open or closed categories,
where open-category questions require the model to generate
a free-form answer, while closed-category questions require
the model to select a predefined answer from a set of options.
Medical VQA task is particularly useful in medical diagnosis
and treatment planning, where doctors often rely on visual
information to make informed decisions. As shown in Table I,
our UMD framework outperforms state-of-the-art models on
all VQA datasets, achieving the accuracy of 68.16%, 85.66%,
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Fig. 5. Ablation study on the hyper-parameter α in MR-Pretrain. Our
UMD framework achieves the best performance when α is set as 0.5.

and 78.71% for VQA-RAD, 82.17%, 88.70%, and 84.73% for
SLAKE, and 80.53% for VQA-Med-2019. In terms of Overall
performance, our UMD framework outperforms the second-
best method (marked in underline) by 1.70%, 1.48%, and
0.66% on three VQA datasets. These improvements contribute
to the transferable features learned by our tailored MR-Pretrain
and the heterogeneity-combat downstream tuning stages.

We also conduct experiments using strong baselines of
MAE, CLIP, and FLIP algorithms. The models are first pre-
trained with different training objectives on the MedICaT
and the ROCO datasets, and then fine-tuned with the same
prediction head with the cross-entropy loss on VQA datasets.
We adopt the same backbones and task heads to ensure fairness
in the experiment. Compared with four strong baselines, two of
which are masked autoencoder-based (i.e., MAE and M3AE),
and the other two are contrastive learning-based pre-training
methods (i.e., CLIP and FLIP), our accuracy increases by
6.93%, 0.66%, 3.73%, and 2.13%, on the VQA-Med-2019
dataset, respectively. These results show that UMD is not only
superior to masked autoencoder-based pre-training, but also
outperforms other types of pre-training algorithms.
Hyper-parameters Analysis. We further conduct experiments
on one of the most significant hyper-parameters, i.e., α in
Eq. (7), to investigate the trade-off between feature-level and
data-level reconstruction in MR-Pretrain and TD-Calib. In our
hyper-parameters study, we set α as 0.2, 0.5, and 0.8 both
for VQA-RAD and SLAKE datasets. As illustrated in Fig.
5, our UMD framework achieves the best performance when
α is set as 0.5, further demonstrating the rationality of the
hyper-parameter setting in our UMD framework.

2) Medical Image-Text Retrieval: Image-text retrieval is a
cross-modal task including medical image-to-text retrieval and
medical text-to-image retrieval tasks, requiring the model to
exploit useful information across modalities. The experimental
results are presented in Table II. We perform comprehensive
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Question: Are there normal 
number of kidneys? 
𝐌𝟑𝐀𝐄	: No                        ✘
Ours: Yes                          ✔

Question: Is the brain tissue 
ischemic?
𝐌𝟑𝐀𝐄: no                         ✘
Ours: Yes                         ✔

Question: Where is the diffuse 
pleural thickening? 
𝐌𝟑𝐀𝐄	: the brain                ✘
Ours: Right lung                ✔

Question: Is the portal vein 
engorged? 
𝐌𝟑𝐀𝐄	: Yes                         ✘
Ours: no                             ✔

Question: Is there any 
intraparenchymal abnormalities 
in the lung fields?
𝐌𝟑𝐀𝐄	: Yes                       ✘    
Ours: No                           ✔      

Fig. 6. Visualization of medical VQA comparison on VQA-RAD dataset. Our UMD framework is capable of providing more accurate answers to
medical questions of different difficulties.

TABLE IV
ABLATION STUDY OF UMD ON THREE MEDICAL VQA DATASETS.

Pre-training Fine-tuning VQA-RAD SLAKE VQA-Med-2019

MR-Pretrain TD-Calib GM-Coord Open Close Overall Open Close Overall Overall

1 65.36 78.68 73.39 74.88 78.13 76.15 72.00
2 ✓ 69.27 82.72 77.38 81.86 86.06 83.51 77.07
3 ✓ 66.48 80.51 74.95 79.84 85.10 81.90 74.67
4 ✓ 68.16 80.51 75.61 77.36 86.54 80.96 76.00
5 ✓ ✓ 67.60 81.99 76.27 80.00 86.54 82.56 77.87
6 ✓ ✓ 68.16 84.19 77.83 81.40 87.74 83.88 79.47
7 ✓ ✓ 69.27 83.82 78.05 82.95 86.54 84.35 80.23
8 ✓ ✓ ✓ 68.16 85.66 78.71 82.17 88.70 84.73 80.53

comparisons with state-of-the-art methods, including ViLT,
METER, MAE, CLIP, FLIP, and M3AE. The results show
that our UMD framework achieves the best R@K (K=1,5 and
10) performances of 23.21%, 54.28% and 67.88% for text-to-
image retrieval, and 24.39%, 54.27%, and 68.97% for image-
to-text retrieval task. UMD surpasses the second-best one by
1.78% and 3.22% in terms of R@5 text-to-image and image-
to-text retrieval tasks respectively. These experimental results
show the effectiveness of our UMD framework on medical
image-text retrieval.

3) Medical Image-Text Classification: Image-text classifica-
tion aims to give a label to a medical image-text pair, which
also belongs to the multi-modal task. By training a model
that can classify medical images associated with the text
descriptions, this task is beneficial in medical research and
clinical scenarios. Besides the baselines with image-only data
and text-only data, we perform the comparison with advanced
multi-modal methods ViLBERT, CLIP, and FLIP in the general
domain, and M3AE in the medical multi-modal domain. As
shown in Table III, our UMD framework achieves the best
accuracy of 79.58% on the MELINDA dataset, outperforming
the second-best ViLBERT by 0.98%. The remarkable advan-
tage in image-text classification demonstrates the effectiveness
of our UMD framework on medical multi-modal data.

D. Ablation Study
To quantitatively evaluate the effectiveness of our proposed

components, i.e., MR-Pretrain, TD-Calib and GM-Coord, we
conduct ablation studies for each component on three VQA
datasets and one image-text classification dataset. The ablation
results are illustrated in Table IV and Table V.

TABLE V
ABLATION STUDY OF UMD ON MELINDA DATASET.

Pre-training Fine-tuning Accuracy AUC Sensitivity Specificity
MR-Pretrain TD-Calib GM-Coord

1 66.09 78.20 27.16 90.86
2 ✓ 78.55 85.48 34.59 94.16
3 ✓ 74.91 86.98 32.23 92.94
4 ✓ 69.72 81.74 31.11 91.70
5 ✓ ✓ 75.26 84.28 33.83 93.49
6 ✓ ✓ 78.72 89.13 34.16 94.14
7 ✓ ✓ 79.24 89.39 34.59 94.27
8 ✓ ✓ ✓ 79.58 91.52 36.00 94.56

• Line 1: The baseline simply trains the multi-modal en-
coder and downstream task head from scratch, without
relying on pre-trained models or the proposed compo-
nents. This baseline serves as a performance lower bound
for VQA and medical image-text classification.

• Line 2-4: The proposed components (i.e., MR-Pretrain,
TD-Calib without pre-training, and GM-Coord without
pre-training) are individually added on the basis of the
baseline (Line 1). These records can validate the inde-
pendent impact of these three components.

• Line 5-8: The possible combination of the proposed three
components. These records are crucial for the ablation
study of MR-Pretrain, TD-Calib and GM-Coord.

For the VQA tasks in Table IV, the MR-Pretrain model
(Line 2) achieves the Overall accuracy of 77.38%, 83.51%,
and 77.07% for the VQA-RAD, SLAKE and VQA-Med-2019
datasets, respectively, which exhibits 3.99% for VQA-RAD,
7.36% for SLAKE, and 5.07% for VQA-Med-2019 increase
compared with the baseline (Line 1). These improvements
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(b) 2D Clustering of M3AE
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(c) 2D Clustering of Ours (UMD)

Fig. 7. Visualization of feature representation using (a) FLIP (b) M3AE, and (b) our UMD on the MELINDA dataset. Our UMD demonstrates a
clearer clustering of data, which is beneficial for multi-modal classification.
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Fig. 8. Visualization of image and text embeddings in our UMD
framework (a) without or (b) with TD-Calib on MELINDA dataset. The
TD-Calib in (b) makes the fusion of multi-modal more adequate.

can be attributed to the transferable weights learned by the
multi-modal encoder model. Moreover, the Overall accuracy
increase (Lines 2-4) compared with the baseline (Line 1) in
all types of questions on three VQA datasets verifies the
effectiveness of the three proposed components (i.e., MR-
Pretrain, TD-Calib, GM-Coord). Furthermore, the Overall
performance of the model with two components (Lines 5-7)
is better than the results of the model with one component
(Lines 2-4), which confirms the complementary enhancement
of the proposed components. In addition, the complete UMD
framework (Line 8) achieves the best Overall performance,
validating the effectiveness of our UMD framework.

For the medical image-text classification task, we perform
the ablation study of UMD to investigate the combination of
pre-training and fine-tuning techniques with various metrics
on the MELINDA datasets, as shown in Table V. Similar to
the conclusion in Table IV, the results in Lines 2-4 in Table V
outperform the baseline (Line 1), which demonstrates each of
our designs is rational. Especially, the MR-Pretrain improves
by 12.46% compared with the baseline (Line 1), showing the
effectiveness of our pre-training method. Furthermore, com-
pared with models with a single design (Lines 2-4), models of
pairwise combination (Lines 5-7) deliver higher performance,
which demonstrates the complementarity of the proposed three
components. Finally, when all three proposed components

are applied (Line 8), our UMD framework achieves the best
performance. The ablation study verifies the effectiveness of
our MR-Pretrain, TD-Calib and GM-Coord modules.

E. Qualitative Analysis

For a qualitative comparison, we further present 5 VQA
test samples from the VQA-RAD dataset to provide predicted
results of M3AE and our UMD framework, as shown in Fig.
6. Compared with M3AE, UMD can understand diagnosis-
related information better and predict more accurate answers,
which can benefit clinical diagnosis more effectively.

Furthermore, we visualize the t-SNE features [61] of ran-
domly sampled cases in the MELINDA dataset, as depicted
in Fig. 8, where the blue and orange points represent image
features ZI and text features ZT , respectively. By comparing
(a) and (b) in Fig. 8, we observe that the fusion of two
modalities is more adequate in the case with TD-Calib. This
finding highlights another benefit of TD-Calib by enhancing
modality fusion, which explains from another perspective why
TD-Calib can contribute to various multi-modal downstream
tasks. Additionally, we perform the 2D clustering of FLIP,
M3AE, and our UMD framework, and visualize the results in
Fig. 7. The different colors represent different categories in
the MELINDA dataset. The comparison between (a), (b), and
(c) in Fig. 7 indicates that our UMD framework can separate
the categories more distinctly.

V. CONCLUSION

In this work, we propose the Unified Medical Multi-modal
Diagnostic (UMD) framework, which utilizes unlabeled multi-
modal medical datasets to enhance the representation learn-
ing of deep learning models in a self-supervised manner.
Specifically, we devise a novel MR-Pretrain strategy, which
guides models to capture semantic information from masked
inputs of various modalities through feature-level and data-
level reconstruction. Moreover, to tackle the distribution het-
erogeneity between pre-training and downstream data and
the modality heterogeneity within downstream datasets, we
present a heterogeneity-combat downstream tuning strategy,
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including the TD-Calib and the GM-Coord. In particular, the
TD-Calib fine-tunes the pre-trained model based on the distri-
bution of the downstream datasets, while GM-Coord adjusts
the gradient weights according to the dynamic optimization
status of different modalities. Extensive experiments on five
public medical datasets demonstrate the effectiveness of our
UMD framework, which outperforms state-of-the-arts on three
kinds of downstream tasks by a remarkable margin.
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