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Background

" Class imbalance inherently exists in medical datasets due to the scarcity of target diseases,
where normal samples are significantly more than diseased samples.

" The 1ssue of class imbalance can be formulated as a long-tailed problem, where a few head

classes contain numerous samples while the tail classes comprise only a few instances.
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Long-tailed Challenge

" This long-tailed distribution in medical datasets leads the model training biased to the majority
categories and severely impairs the performance of diagnostic models in real-world scenarios.

® Current decoupling methods suffer from inefficient representation learning during the first stage
and inadequate classifier recalibration in the second stage.
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Method: Overview

" We propose the MRC-VFC framework to combat long-tailed problems.

" Multi-view Relation-aware Consistency (MRC), to enhance the encoder’s representation
ability, especially on the tail classes by constraining the encoder’s consistency from multiple
VIEWS.

" Virtual Feature Compensation (VFC), to recalibrate the classifier by uniformly sampling

instances for each class under multivariate Gaussian distribution in feature space, and an
iterative optimization procedure.
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Fig.4 The overall framework of our MRC-VFC method.




Method: Multi-view Relation-aware Consistency (MRC)

" MRC i1s proposed to encourage the encoder
to apprehend the inherent semantic features
of the input images under different data
augmentations as in Fig. 5.
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Method: Virtual Feature Compensation (VFC)

" We propose Virtual Features Compensation
(Fig.6), which generates virtual features for
each class under multivariate Gaussian
distribution [1] to combat the long-tailed
problem.

1) The mean and covariance are:

1 I 1
Ky = ng(m), X = Nk_lz(w—#k)T(w—ﬁ%)

2) M step constraint:

1 K
Eé\gageZ = R—KZ Z LCE(f('vz)ay)

k=1wv; er
3) E step constraint:

o _ 1 0= 4=y
‘CstageZ - w;{ q

[1] Ahrendt, Peter. "The multivariate gaussian probability distribution." Technical University of Denmark, Tech. Rep (2005): 203.
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Experiment: Dataset

" To evaluate the performance on long-tailed medical image classification, we construct

dermatology datasets from ISIC1 [2] following [3].

Table 1. The class distribution of the ISIC-Archive-LT dataset.

ISIC-Archive-LT

Group Head

Middle

Tail

Class NV MEL BCC SK |AK SCC BKL SL |VASC DF LK LS AN AMP

Training | 9012 3165 2375 1024|608 459 268 189| 177 172 22 18 10 9
Validation| 1288 452 339 147 |87 65 39 27| 25
Testing | 2575 905 679 293|174 132 77 54| 51

24 3 3 2 2
50 7 6 3 3

Total |12875 4522 3393 1464|869 656 384 270| 253 246 32 27 15 14

Table 2. The class distribution of the ISIC-2019-LT dataset with imbalance factor =

{100, 200, 500}.

ISIC-2019-LT

Class

NV MEL BCC BKL AK SCC VASC DF

Original

12875 4522 3323 2624 867 628

253 239

Factor=100
Factor=200
Factor=500

12875 4140 2785 2013 609 404
12875 3750 2285 1496 410 247
12875 3290 1759 1010 243 128

149 129
83 65
38 26

[2] Tschandl, Philipp, Cliff Rosendahl, and Harald Kittler. "The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions." Scientific data 5.1 (2018): 1-9.

two

[3] Ju, Lie, et al. "Flexible sampling for long-tailed skin lesion classification." International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2022.



Experiment: Comparison with SOTA

" MRC-VFC outperforms state-of-the-art decoupling, reweighting, and resampling works.

" As illustrated in Table 4, we compare our MRC-VFC framework with the aforementioned
methods on the ISIC-2019-LT dataset under different imbalance factors. Among these methods,

our MRC-VFC framework achieves the best performance with an accuracy of 77.41%, 75.98%,
and 74.62% under the imbalance factor of 100, 200, and 500, respectively.

Table 3. Comparison with state-of-the-art algorithms on the ISIC-2019-LT dataset.

ISIC-2019-LT

Methods Acc(%) @ Factor=100|{Acc(%) @ Factor=200|Acc(%) @ Factor=500
CE 56.91 53.77 43.89
RS 61.41 95.12 47.76
MixUp 59.85 54.23 43.11
GCE+SR 64.57 08.28 54.36
Seesaw loss 68.82 65.84 62.92
Focal loss 67.54 65.93 61.66
CB loss 67.54 66.70 61.89
FCD 70.15 68.82 63.59
FS 71.97 69.30 65.22
Ours w/o MRC 75.04 73.13 70.13
Ours w/o VFC 72.91 71.07 67.48
Ours 77.41 75.98 74.62




Experiment: Comparison with SOTA

" We further perform the comparison with state-of-the-art algorithms on a more challenging
ISIC-Archive-LT dataset for long-tailed diagnosis. As illustrated in Table 2, our MRC-VFC
framework achieves the best overall performance with an accuracy of 67.84% among state-of-
the-art algorithms, and results in a balanced performance over different classes, 1.e., 69.71% for
head classes and 70.34% for tail classes.

Table 4. Comparison with state-of-the-art algorithms on the ISIC-Archive-LT dataset.

ISIC-Archive-LT

Methods Head (Acc%)|Medium (Acc%)|Tail (Acc%)|All (Acch)
CE 71.31 49.22 38.17 52.90
RS 70.17 55.29 34.29 53.25
GCE+SR 64.93 57.26 38.22 53.47
Seesaw loss 70.26 55.98 42.14 59.46
Focal loss 69.57 56.21 39.65 57.81
CB loss 64.98 57.01 61.61 61.20
FCD 66.39 61.17 60.54 62.70
F'S 68.69 58.74 64.48 63.97
Ours w/o MRC 69.06 62.14 65.12 65.44
Ours w/o VFC 65.11 62.35 67.30 64.92
Ours 69.71 63.47 70.34 67.84




Conclusion

" To address the long-tails in computer-aided diagnosis, we propose the MRC-VFC framework to
improve medical image classification with balanced performance in two stages.

" In the first stage, we design the MRC to facilitate the representation learning of the encoder by
introducing multi-view relation-aware consistency.

" In the second stage, to recalibrate the classifier, we propose the VFC to train an unbiased
classifier for the MRC-VFC framework by generating massive virtual features.

" Extensive experiments on the two long-tailed dermatology datasets demonstrate the

effectiveness of the proposed MRC-VFC framework, which outperforms state-of-the-art
algorithms remarkably.
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