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A B S T R A C T

Autism Spectrum Disorder(ASD) is a set of neurodevelopmental conditions that affect patients’ social abil-
ities. In recent years, many studies have employed deep learning to diagnose this brain dysfunction through
functional MRI (fMRI). However, existing approaches mainly focused on the abnormal brain functional con-
nections but ignored the impact of regional activities. Due to this biased prior knowledge, previous diagnosis
models suffered from inter-site measurement heterogeneity and inter-individual phenotypic differences. To
address this issue, we propose a simple unsupervised downsampling method for fMRI that can perform a
personalized lower-resolution representation of the entire brain networking regarding both the functional
connections and regional activities. Specifically, we abstract the brain imaging as a graph structure and
straightforwardly downsample it to substructures by self-attention graph pooling. To further recalibrate the
distribution of the extracted features under phenotypic information, we subsequently embed the sparse feature
vectors into a population graph, where the hidden inter-subject heterogeneity and homogeneity are explicitly
expressed as inter- and intra-community connectivity differences, and utilize Graph Convolutional Networks
to learn the node embeddings. By these means, our framework can extract features directly and efficiently
from the entire fMRI and be aware of implicit inter-individual variance. We have evaluated our framework
on the ABIDE-I dataset with 10-fold cross-validation. The present model has achieved a mean classification
accuracy of 86.45% and a mean AUC of 0.93, better than the state-of-the-art methods. The source code is
available at https://github.com/jhonP-Li/ASD_GP_GCN.

© 2023 Elsevier B. V. All rights reserved.

1. Introduction

Autism spectrum disorder (ASD), a range of brain develop-
mental disorders, has commonly been studied worldwide. In
2020, ? reported that approximately 1 in 45 children in the U.S.
was diagnosed with this disease caused by both genetic and en-
vironmental factors. This mental disorganization, which will
result in difficulties with social interaction and communication,
can be noticed at an early age of a child. However, another
study, conducted in the U.K., showed that the current time-
consuming diagnosis process could lead to a delay of around
3.5 years from the point at which parents first consult a doc-
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tor to the confirmation of an ASD diagnosis ?, which results in
unnecessary panic and delayed intervention.

Similar to physical disease diagnosis, this brain dysfunction
can be detected with pathological manifestations. In ?, the au-
thors discovered that there existed structural differences in cer-
tain areas in the brain between autism patients and control sub-
jects. ? reported that abnormal brain function connections were
found in ASD subjects. However, the study evaluated only a
few samples, therefore these diagnosis methods cannot be gen-
eralized. In recent years, brain imaging analysis based on deep
learning and machine learning, tested on large datasets, has
been widely studied. ? employed Long Short-Term Memory
(LSTM) to analyze the time-series data of fMRI automatically.
? applied Deep Neural Networks (DNN) directly on the fMRI
and reported performance improvement compared to Support
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Vector Machine (SVM) and Random Forest (RF). In ?, the au-
thors designed a Convolutional Neural Networks (CNN) archi-
tecture with fMRI as input and achieved slightly better perfor-
mance than the DNN. ? reached the best performance of end-
to-end CNN models by 3D-CNN and the ensemble brain atlas.

Limited by the ability to process structured brain network-
ing, the naive end-to-end implementations of CNN models have
reached the bottleneck. On the one side, the functional connec-
tions of brain regions do not follow the spatial distributions of
the areas, e.g., a node may interact with another node far away
from it ?. However, the convolution kernels can only extract
features from spatial neighborhoods for each pixel. To be aware
of those cross-space connections, CNN needs more convolution
layers to form a wider receptive field, which backfires to overfit-
ting due to the lack of samples. On the other side, to downsam-
ple the raw inputs, many methods have focused on selecting a
certain number of functional connections. These methods rep-
resent brain imaging as a correlation coefficient matrix of which
the elements denote the covariances between every two regions
based on their time-series signals (???????). Specifically, in ?,
the authors elaborately constructed a workflow to extract fea-
tures from functional connections and achieved state-of-the-art
performance on the ABIDE I dataset using a linear classifier.
However, the existing feature selection methods mainly extract
features from the pairwise regional correlation matrix. This in-
flexible Euclidean representation of brain imaging did not only
ignore the details of regional signals, which are believed to re-
late to ASD (????), but also omit the latent interaction among
the connections.

To leverage the functional connections and regional activi-
ties, the brain imaging needs to be described as a graph struc-
ture, which perspicuously expresses the functional interactivity
among regions as edges among nodes. Some studies have em-
ployed this non-Euclidean form to simulate brain networking
and discover group-level brain biomarkers of ASD (??????),
e.g., ? constructed a personalized brain connectivity graph for
each individual and measured the inter-individual graph struc-
tural difference using graph convolutional networks. ? utilized
graph convolutional networks on the geometric representation
of the brain and tried to interpret the learned connections as
ASD biomarkers. To find the abnormal brain networks that may
interact with ASD, those graph convolutional methods have
barely downscaled the input brain imaging, unlike the present
graph embedding method. In other words, they focused on di-
rectly analyzing the graph-level information but did not extract
higher-order features from it like the above selection methods,
which makes the methods susceptible to inter-individual differ-
ences and even temporary brain activities ??. Hence, limited by
the surfeit model complexity and individual brain differences,
the ASD identification accuracy of those models is not promis-
ing, making the inference of biomarkers unconvincing.

In the context of this ASD disease prediction problem, an-
other challenge is the non-imaging difference between individ-
uals, i.e., gender, handedness, IQ, and so on. Though this in-
formation is not present in the fMRI, it does affect the prob-
ability of suffering from ASD. For example, ? indicated that
one in every 42 males and one in 189 females in the United

States is diagnosed with an autism spectrum disorder. ? re-
ported the correlation between the handedness and ASD. Be-
sides, the fMRI scanning devices and measurement parameters
from different data collection sites are not strictly the same ?.
Those hidden factors have caused the non-identity distribution
of features and lowered the generalization ability of models. To
address this, some authors manually forced those settings to be
the same by hard clustering strategy on samples. For example,
in (????), the authors elaborately selected training and testing
samples from a certain data collection site. Hence, the implicit
differences among samples were further narrowed, and these
methods achieved much better classification performance than
the models evaluated on the entire dataset. Although this hard
clustering strategy did prove the feasibility of ASD diagnosis
based on deep learning, the generalization ability of the mod-
els cannot be guaranteed as the number of samples has been
dramatically reduced in that way.

To address the above issue, Graph Convolutional Networks
(GCN) can be adopted to recalibrate the features extracted from
brain imaging, according to the non-imaging data. Unlike as-
signing each subject into a cluster, we embed each subject into
a population graph, where nodes denote individuals and edges
represent the phenotypic similarity between every two nodes.
Thus, the hidden inter-subject heterogeneity and homogeneity
are explicitly expressed as inter- and intra-community connec-
tivity differences. Some methods succeeded in fusing imaging
and text information in this way but achieved lower classifica-
tion accuracy than unimodal methods owing to inefficient brain
imaging feature extraction (???). Namely, in ?, the authors em-
ployed 3D CNN to extract features from fMRI and Variational
Autoencoder to extract features from MRI, which are not ef-
ficient as previously discussed. Although this framework has
considered functional, structural, and phenotypic information,
it achieved lower performance than the method that directly uti-
lized 3D CNN on fMRI ?.

In this study, we propose a novel framework that incorpo-
rates self-attention graph pooling and graph convolutional net-
works. We explicit graph pooling to downsample the structured
form of brain imaging, whereas previous brain modeling meth-
ods mainly extract features from functional connections. Unlike
existing graph-level analysis, we individually downsample and
flatten the brain imaging to sparse vectors, and implement Mul-
tilayer Perceptron to extract higher-level information from the
selected subgraphs. To fuse the imaging and non-imaging infor-
mation, we then initialize a population graph, where nodes rep-
resent individuals and edges denote phenotypic similarities. As-
signing each subject with the extracted brain imaging features,
we employ Graph Convolutional Networks to learn the node
embeddings on the population graph, which succeed in regular-
izing the individual features according to phenotypic property.
Having merged functional connections, regional activities, and
non-imaging data, our framework presents its superior in ASD
diagnosis, reaching an accuracy of 86.45% on ABIDE I dataset.
The main contributions of our work are four-fold:

1) We have developed a self-attention downsampling method
on fMRI. The unsupervised graph pooling efficiently
downsamples the non-Euclidean brain networking. By
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Table 1. Overview of the ABIDE I dataset preprocessed by CPAC

Sites Age(year) Gender handedness Diagnostic group

Min Max Male Female Left Right Ambi∗ Mixed ASD Control

CALTECH 17.0 56.2 10 5 1 13 1 0 5 10
CMU 19.0 33.0 7 4 1 10 0 0 6 5
KKI 8.2 12.8 24 9 1 27 0 5 12 21
LEUVEN 12.1 32.0 49 7 7 49 0 0 26 30
MAX MUN 7.0 58.0 42 4 2 44 0 0 19 27
NYU 6.5 39.1 136 36 N/A 74 98
OHSU 8.0 15.2 25 0 1 24 0 0 12 13
OLIN 10.0 24.0 23 5 5 23 0 0 14 14
PITT† 9.3 35.2 43 7 4 45 0 0 24 26
SBL† 20.0 49.0 26 0 1 0 0 0 12 14
SDSU 8.7 17.2 21 6 2 25 0 0 8 19
STANFORD 7.5 12.9 18 7 3 20 2 0 12 13
TRINITY 12.0 25.7 44 0 0 44 0 0 19 25
UCLA 8.4 17.9 74 11 9 76 0 0 48 37
UM† 8.2 28.8 93 27 15 97 0 0 47 73
USM 8.8 50.2 67 0 N/A 43 24
YALE 7.0 17.8 25 16 7 34 0 0 22 19

Total 6.5 58.0 727 144 59 531 3 5 403 468
* Ambi: Ambidextrous
†

The handedness information of some subjects is unavailable.

weighing both the functional connections and regional sig-
nals simultaneously, this downsampling method retains the
crucial information for diagnostic classification.

2) We have fused the multi-modal information through graph
convolutional networks and intuitively illustrated its effi-
ciency.

3) Different from hard selecting universal biomarkers of
ASD, our framework tends to select a personalized sub-
structure of brain networking for each individual. This
novel strategy has detected inter-group heterogeneity and
intra-group homogeneity regarding brain activities.

4) We have constructed an ASD diagnosing framework,
which outperforms state-of-the-art methods on the ABIDE
I dataset, reaching a classification accuracy of 86.45%.
This clinically meaningful method could contribute to
early detection and intervention for ASD.

The rest of the paper is organized as follows: Section 2
introduces the datasets and illustrates the details of the pro-
posed model. In Section 3, we present the experimental setup,
evaluation metrics, experimental results and comparison with
other methods, ablation study, and intuitive exhibition of model
mechanisms. In section 4, we discussed the limitation of the
current model and future works. Finally, we draw the conclu-
sion in Section 5.

2. Materials and Methods

2.1. ABIDE Dataset
Constructed by ?, the ABIDE I dataset contains a variety

of information of 1,112 subjects, i.e., MRI. fMRI, and phe-
notype data, collected from 17 international sites. To reduce

the fMRI measurement error, current studies are focusing on
the preprocessed data. ? performed four different preprocess-
ing pipelines on the original material. To compare with other
methods (?????), in the current paper, we have used the data
preprocessed by the Configurable Pipeline for the Analysis of
Connectomes (CPAC). Built by ?, the chosen functional pre-
processing pipeline includes time slicing, motion correction,
skull-stripping, global mean intensity normalization, and nui-
sance signal regression. Thus, the noise caused by unrelated
motions, like the heart beating, is reduced. To further regular-
ize the input sample features, we have also employed band-pass
filtering and global signal regression.

As shown in the table 1, the processed data contains 403 ASD
subjects and 468 typical control subjects. Caused by the mea-
surement difference among different sites, some categories of
the phenotype data are not or partially collected, like handed-
ness information. Moreover, the distribution of the dataset is
unbalanced on some features. For example, the 17 sites only
have collected 144 female samples but collected 727 male sam-
ples. According to the view of ?, gender is a rather important
factor affecting the probability of ASD. This unbalanced fea-
ture distribution, which is not present in the MRI or fMRI data,
has caused the non-identical distribution of features and thus
affected the performance of unimodal learning models.

To further reduce the dimensionality of input data, fMRI is
separated logically as signals of regions of interest (ROIs). The
voxel-wise time series is thus paraphrased as the time series of
regional signals. Proposed by (????), the Harvard-Oxford at-
las is split into cortical and subcortical structural probabilistic
atlases. The HO atlas, which has also been selected by other
works (???), is filtered with a 25% threshold and subsequently
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Fig. 1. Overview of the proposed framework; The top-left part illustrates self-attention graph pooling in section 2.3. The top-right part indicates the
training phase of feature extractor, where we train the MLP using the pooling output. In the bottom part, we construct a population graph, where
nodes denote subjects and edges represent interindividual phenotypic similarity. We then train a GCN model by assigning each node with dense features
extracted by MLP.

divided into left and right hemispheres at the midline. The ROIs
represent 110 functional brain regions, i.e., left and right Hip-
pocampus, left and right Cuneal Cortex, left and right Planum
Temporale, left and right Occipital Pole, etc. Thus, the original
4D brain imaging is further downsampled to a 2D data struc-
ture, containing 110 regions and the corresponding time series
for each area.

2.2. Model Overview

As shown in the figure 1, the whole pipeline consists of
three main parts. First, the unsupervised graph pooling directly
downsamples the graph representation of the brain to a sparse
brain networking. We then train a multilayer perception using
the flattened features and ground truth labels to extract higher-
order features from the pooling results. Finally, we employ a
two-layer graph convolutional network to learn the node em-
beddings by embedding every individual into the population
graph and building edges according to the phenotypic informa-
tion.

2.3. Graph Pooling

In this section, we develop a self-attention unsupervised
graph pooling strategy inspired by ? to select the crucial sub-
graphs of brain networking for each subject individually. It
improves the existing brain imaging feature extractors in two
main aspects. First, it can directly downsample the entire graph

structure, while other methods mainly target functional connec-
tions. Second, this graph pooling operation downsamples graph
without supervision. In other words, this step can be directly
added to other related frameworks without any additional train-
ing cost.

Graph pooling, as a downsampling method for graph struc-
ture, is a central component of graph convolutional networks
in graph classification tasks. For example, the intuitive idea is
to average all node embeddings to represent the entire graph ?.
Compared to other graph pooling methods (???), the proposed
graph pooling procedure is designed to preserve the informa-
tion and connectivity of the graph and reduce the information
redundancy. As shown in figure 4, this strategy can automati-
cally select key brain subgraph without strong assumption about
the brain networking.

Before this implementation of graph pooling, other models
trained classifiers, like MLP, or constructed a specific feature
extracting framework to extract features from the functional
connections (????) which are represented as the correlation
coefficients of every two regions. At this phase, those meth-
ods have directly ignored the details of regional brain activi-
ties. This intuitive method, mapping the two vectors to a float
ranging from -1 to 1, has reduced the data complexity. How-
ever, regarding the time series of brain regions as node fea-
tures and functional connections as edges, this edge-only fea-
ture extraction strategy has caused much more information loss
to the entire graph structure. Moreover, studies have proved
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the importance of the node features in the diagnosis of ASD.
In (????), the authors reported the abnormal regional activi-
ties among ASD subjects. Thus, leveraging the information of
both functional connections and regional activities, graph pool-
ing has proved its superior in this brain disorder diagnosis as
shown in section 3.3 and figure 3.

2.3.1. Graph Representation of Brain Imaging
After being labeled as 110 regions according to the HO at-

lases, fMRI can be abstracted as a graph structure, where nodes
denote brain regions and edges indicate functional connections.
Initially, every node is assigned with a feature vector that rep-
resents the time series of regional activity. In ?, the authors
defined 6105 brain functional connections by connecting right-
side regions to the left side and left-side regions to the right. In-
spired by it, we construct a graph representation of brain imag-
ing, where regions are connected according to the same strategy
and all regions are connected with the global mean time series
to reduce measurement error further. In short, the input brain
graph structure contains 111 nodes and 6215 edges. In figure 4,
we have also tested the graph pooling with other brain network-
ing initialization.

2.3.2. Node Selection
The self-attention graph pooling consists of two parts: First,

it selects the nodes based on the criterion of minimizing graph
information loss. Subsequently, to connect the probably iso-
lated subgraph caused by the node selection and recorrect the
initial brain regional connections to some degree, an unsuper-
vised edge prediction method is employed between the two-hop
neighbors of each node and itself. At the first component, a
node information score is defined as the L1 norm of the Man-
hattan distance between the node features itself and the one con-
structed from its neighbors ?:

S = γ(g) =
∥∥∥(I − (D(l))−1A(l))H(l)

∥∥∥
1 (1)

where A(l) and H(l) are the adjacency and node features matrices
of the l-th layer. The information of edges is present implicitly
as the connections among nodes. I represents the identity ma-
trix and D(l) denotes the l-th layer diagonal degree matrix of A(l).
∥·∥1 performs the L1 norm row-wisely. The vector S contains
the information score of each node, which indicates its impor-
tance at this selection stage. The nodes are then selected by
ranking and selecting the top-K ones regarding the information
score:

idx = top(S , ⌈r ∗ n(l)⌉)

H(l+1) = H(l)(idx, :)

A(l+1) = A(l)(idx, idx)

(2)

where r is the pooling ratio which is set manually and will be
discussed in the section 3.3. The function top(·) returns the
indices of top n(l+1) = ⌈r ∗ n(l)⌉ values of the information scores
S . H(l)(idx, :) and A(l)(idx, idx) performs the element selection
according to the indices of top information scores. Thus, in the
l-th layer, n(l+1) nodes are remained and others are removed.

Intuitively, the information score of a node is the feature dif-
ference between the average value of its neighbors and itself.
The greater the difference, the higher the information score, and
the less likely to remove the node. For example, if the feature
of a node is equal to the average feature of its neighbors, it may
be safe to drop this node without further information loss to the
entire graph. On the other side, this selection method simulates
a probable universal strategy for removing the information re-
dundancy of fMRI: If the blood oxygen level activity is close to
its neighbors, the area may be regarded as coactivated with its
neighbors. After Removing all those nodes, the remaining ones
may be activated in the first order, which may act like a trigger
that has launched the sequence of regional brain activities.

2.3.3. Edge Prediction
At the same time, the node selection method may isolate

some subgraphs and be susceptible to the initialization of brain
graph structure, as it can not learn new connections beyond the
given ones. To preserve the completeness of the subgraph, ?
developed a differentiable edge detection method based on the
node features, which involved superfluous training overhead.
Instead, we have designed a self-attention approach to predict
underlying links among selected nodes:

E(l)(p, q) =
H(l)(p, :) · H(l)(q, :)∥∥∥H(l)(p, :)

∥∥∥ ∥∥∥H(l)(q, :)
∥∥∥ + A(l)(p, q) (3)

where E(l)(p, q) represents the similarity score between the two
nodes, H(l) denotes the feature matrix at the l-th layer. The
corresponding element of adjacency matrix A(l)(p, q) is added
to the cosine similarity of the two feature vectors to assign
a more significant similarity score to the directly connected
nodes. The similarity score is then normalized by the sparse
attention mechanism proposed by ?:

S im(l)(p, :) := argmin
n∈∆K−1

∥∥∥n − E(l)(p, :)
∥∥∥2

where ∆K−1 = {n ∈ RK | 1T n = 1,n ≥ 0}
(4)

where ∆K−1 is a (K-1)-dimensional probability simplex and K
denotes the number of nodes in the brain graph. For arbitrary
node p, the softmax function normalizes the similarity scores
between it and other nodes to probability distributions in ∆K−1.
However, this probabilistic approach retains small non-zero val-
ues of normalized similarities, which increases the complexity
of downsampled subgraph. ? projects the target vector onto
simplex ∆K−1 and achieves sparsity when hitting the bound-
ary. Specifically, the adjacency matrix is updated as the op-
timum of this quadratically constrained optimization problem.
The closed-form solution is as follows:

A(l+1)(p, q) =
[
E(l)(p, q) − τ(E(l)(p, :))

]
+

(5)

τ(n) =

(∑
j∈Q(n) n j

)
− 1

|Q(n)|
where Q(n) = { j ∈ [K] | n j > 0}

(6)

where [K] = {1, ...,K} and [t]+ := max{0, t}. All the coor-
dinates that below threshold function τ(·) will be truncated to
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zero. Thus, this piecewise function maintains the sparsity of
adjacency matrix A(l+1)(p, q) . Moreover, as shown in figure 5,
this link prediction is able to detect some underlying connec-
tions that are not given in the initialization step, which makes
the model more robust.

2.3.4. Individual-aware downsampling
To conclude a universal ASD clinical diagnosis suggestion,

(????) tried to manually select top-N critical functional con-
nections from the fMRI of all subjects. Ideally, this procedure
would return some functional connections from which we could
quickly tell if someone is suffering from this brain disorder.
However, as discussed in ?, the results are not satisfactory: The
highest mean accuracy is 70.40%, and the smallest number of
selected functional connections is 250, which is not adequate
nor efficient for clinical diagnosis.

Different from that ambitious universal key features selec-
tion, we develop a personalized feature extraction strategy. In-
stead of selecting a set of universal biomarkers of ASD, we treat
each subject separately and downsample the graph modeling
according to its characters. As illustrated in the figure 1, we
performed graph pooling onto every individual and stored the
results as sparse vectors. In terms of storage and computation
cost, like the above hard selection, that strategy has success-
fully downsampled the input brain imaging. On the other hand,
the feature matrix has preserved more information than the pre-
vious methods. The two main benefits of this sparse feature
fusion are as follows: First, it downsamples the brain imag-
ing to extraordinarily few key components even without a per-
formance decrease, which will be discussed in the section 3.3.
Second, the difference in selected features between individuals
has clinical meanings. It may indicate the varied brain regional
activities and connections among different groups and will be
discussed in the section 3.4.

2.4. Graph Convolutional Networks

To fuse brain imaging data and non-imaging data, we con-
structed a population graph where nodes represent subjects and
edges indicate the similarity degree regarding phenotypic infor-
mation. The non-imaging information similarity among sub-
jects is characterized as the connectivity degree among nodes,
i.e., nodes with similar phenotypic properties are more likely to
be in the same community. We employ Graph Convolutional
Networks to process the population graph structure with ev-
ery node associated with a feature vector extracted from brain
imaging. Proposed by ?, GCN extends convolution operations
onto graph structures and is able to learn the node embeddings.
At each layer of GCN, the node feature vector is then recalcu-
lated as the weighted sum of its and its neighbors’ features, that
is, the node embedding. Hence, the features of nodes that are in
the same community tend to follow a similar distribution.

2.4.1. Population Graph Construction
As stated in section 2.1, we use the data of 871 subjects pre-

processed by CPAC. The connection between two nodes is de-
cided by their phenotypic similarity, i.e., gender, age, handed-
ness, etc. However, caused by inconsistent measurement among

different data collection sites, some categories of data are not or
partly collected. For example, nearly 30% of the handedness
data are not available as illustrated in the table 1. Suggested by
?, we consider a subset of the whole non-imaging data, which
contains gender, age, and data collection sites information. In-
tuitively, the similarity is computed as the cosine similarity be-
tween two phenotypic feature vectors Mu and Mv.

S im(u, v) = |
Mu · Mv

∥Mu∥ ∥Mv∥
| (7)

where M = {Age,Gender, S ite} denotes the selected subset of
non-imaging data. A threshold of 0.5 is then applied to the
derived similarity values to decide whether the two nodes u, v
are connected or not.

A(u, v) =
1, i f S im(u, v) > 0.5

0, otherwise
(8)

where S im(u, v) is the similarity score of the two subjects. A
represents the adjacency matrix of the graph. Two nodes are
connected if their cosine similarity value is above 0.5. By
these means, the population graph is initialized as an undirected
graph containing 871 nodes. In figure 6, we have also tested the
GCNs with different population graph initialization.

2.4.2. GCNs
We have implemented two kinds of GCN in this part. The

first layer is the same as the one proposed by ?. The second
layer is the Cluster-GCN presented by ?, which has accelerated
the basic GCN block.

Extending convolution operations to non-Euclidean space,
GCNs have achieved promising performance on arbitrarily
structured graphs. Though there exist different forms of GCN
block, the universal core task is to learn a non-linear function
f (H(l), A) which aggregates the feature vectors of connected
nodes to generate features for next layer:

H(l+1) = f (H(l), A) = σ(D̃−
1
2 ÃD̃−

1
2 H(l)W (l)) (9)

with Ã = A + I, where I is the identity matrix and D̃ is the
diagonal node degree matrix of Ã. For the l-th layer of the GCN,
the graph can be represented as the feature matrix H(l). H(0) = X
and H(L) = Z denote the input and final output feature matrix
respectively. W (l) is the learnable weight matrix and σ(·) is the
non-linear activation function, ReLU. In this way, the features
are aggregated to form features of the next layer. ? reduced the
computational cost by clustering nodes into multiple bathes:

1
|B|

∑
i∈B

∇loss(yi, zL
i ) (10)

where B indicates the subset of nodes and zL
i represents the fi-

nal prediction label of the i-th subject. Hence, at the loss back-
propagation phase, the model only needs to calculate the gradi-
ent for the mini-bath. The Binary Cross-Entropy Loss is defined
as the loss function:

loss(yi, zL
i ) = −[yi ∗ log(zL

i ) + (1 − yi) ∗ log(1 − zL
i )] (11)
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Table 2. Comparison with state-of-the-art methods on ABIDE I dataset. Best and second results are highlighted with BOLD and underline

References Methods Performance

Accuracy Sensitivity Specificity

? GCN 69.50 - -
? LSTM 66.80 - -
? SVC 66.80 61.00 72.30
? DNN 70.00 74.00 63.00
? FCs selection and GCN 70.40 - -
? 3D-CNN 73.30 - -
? Autoencoder 67.50 68.30 72.20
? FCs selection and LDA 77.70 - -
? Joint learning 73.10 71.40 74.60
? CNN 70.20 77.00 61.00
? FCs selection and SVM 76.80 72.50 79.90
? FCs selection and MLP 74.52 80.69 66.71
? MC-NFE 68.42 70.05 63.64

Present study Graph pooling and GCN 86.45 82.70 89.62
GCN: Graph Convolutional Networks
LSTM: Long Short-Term Memory
SVC: Support Vector Classification
MLP: Multi-Layer Perceptron
LDA: Linear Discriminant Analysis
LR: Logistic Regression
FCs: Functional Connections
MC-NFE: Multi-site Clustering and Nested Feature Extraction

After the graph convolutional layers, a linear classifier is ap-
plied on each node. The final outputs of the classifier repre-
sent the probability of ASD. By filtering the probabilities with
a 0.5 threshold, the model finally outputs the predicted diagnos-
tic group of each subject.

3. Experimental analysis

3.1. Experimental Settings

To make this experiment consistent with other studies
(??????), we have performed the 10-fold cross-validation on
the 871 samples and repeated it ten times. The multilayer per-
ceptron and graph convolutional networks are trained separately
but strictly on the same train set. At the training stage of the
multilayer perceptron, we have employed the nested 10-fold
cross-validation and repeated the inner loop five times every
outer one. The whole framework is trained and tested on an
NVIDIA TESLA V100S. During the optimization, we have uti-
lized the Adam optimizer, of which the parameters are set as
follows: learning rate = 0.0001, weight decay = 0.01. We have
also used the dropout to enhance the generalization of GCN
with a dropout ratio of 0.01.

3.2. Results

In the table 2, we have compared our framework with other
models on the same ABIDE I dataset preprocessed by CPAC
?. In general, those methods can be categorized into two
types: single-stage and multi-stage. The single-stage meth-
ods directly deploy deep learning methods, like CNN, to deal

with this ASD VS Control binary image classification problem
(??????). However, limited by the number of available train-
ing samples, these naive implementations of neural networks
have not achieved promising performance. On the other hand,
multi-stage methods usually consist of two components: fea-
ture extraction and classification. Previous works trained fea-
ture extractors to extract features from brain functional con-
nections (????). A classifier, like SVC, is then trained with
extracted features as inputs. This kind of framework has suc-
cessfully downsampled the high-dimensional brain imaging and
thus made obvious performance improvement even with linear
classifiers compared to the straightforward CNN models. For
example, ? constructed a specific workflow to select the key
features from brain imaging and achieved an accuracy of 77.7%
with linear discriminant analysis.

Like the above multi-stage methods, the present framework
includes feature extraction and classification parts. We have
employed graph pooling to downsample the given brain net-
working and trained a multilayer perceptron to further extract
features, whereas previous feature extractors mainly focused
on functional connections. Inspired by ?, we employ GCN in
the final classification part, which has leveraged imaging and
non-imaging information. By these means, our framework out-
performs the state-of-the-art method, reaching an accuracy of
86.45% and a mean AUC of 0.93. The efficiency of graph pool-
ing is discussed in the following part.

3.3. Efficiency of Graph Pooling

As previously mentioned, studies have reported abnormal
brain functional connections found on ASD subjects?. With
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Fig. 2. Example of framework performance on the outer loop of the nested cross-validation. The backbone is set as Graph pooling and GCN. The random
seed of outer loop = 13.

Accuracy Specificity Sensitivity AUC F1 BAC
Metrics

0.0

0.2
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0.6
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lu

e
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Edge Only
Graph Pooling

Fig. 3. Comparison between two strategies: edge-only brain representation
and graph pooling. The brain imaging downsampled by the two strategies
is fed into the same backbone, i.e., MLP and GCN, to assure other settings
are unchanged.

this prior knowledge, in (????), the authors solely simplified
brain imaging as functional connections. To directly and fairly
compare these two downsampling strategies, we have fed the
results of the two into our framework with strictly the same set-
tings. As shown in figure 3, the graph pooling outperforms the
edge-only brain networking representation with the proposed
framework in terms of all the current metrics. The framework
with graph pooling results has achieved an accuracy of 86.45%,
while it with functional brain connections reached an accuracy
of 63.96%. Considering that the only difference between the
two models in figure 3 is the preprocessing method, we can
conclude the superior of graph pooling.

To further evaluate the efficiency of graph pooling, we have
tested the graph pooling for different brain networking initial-
ization, including Erdős–Rényi model ?, Watts-Strogatz model
?, Barabási–Albert model ?, Bipartite graph ?, and fully con-
nected graph. As shown in figure 4, the graph pooling is not
sensitive to the initialization of brain networking details, which
indicates that the proposed self-attention graph pooling is ef-
ficient and robust to downsample brain networking. Even if
the edges are randomized according to Erdős–Rényi model with
a probability of 0.3, the proposed framework can still achieve
promising performance. Besides, the bipartite graph model ?
has reached similar or better performance in terms of some met-
rics compared to the fully connected graph.

The main advantages of graph pooling are 3-fold: First, it
can be easily generalized to other related problems. Previ-
ous methods work under a strong assumption that it is only
the abnormal functional connections that cause ASD. This pre-
supposition is not only biased in the current task (????) but
also limit generalizing these methods to other brain disorder di-
agnosing problems. On the contrary, graph pooling requires
less prior knowledge about brain functions as it straight re-
ceives the entire graph representation of brain imaging and can

learn connections beyond the given brain networking. Besides,
as discussed in section 2.3.2, this unsupervised downsampling
method needs no training overhead. Second, it is more efficient
for brain networking downsampling. As shown in table 3, by
using the downsampling results of graph pooling, the frame-
work has achieved a remarkable improvement. Third, it can be
aware of individual characters to some degree, which is ben-
efited from the self-attention mechanism and sparse represen-
tation of extracted features, as discussed in section 2.3.4. We
have observed variance in brain imaging pooling results of sub-
jects from different groups, as shown in figure 5, and found
even more obvious variance when we further split the groups.
This inter-group heterogeneity may have clinical and biomedi-
cal meanings.

3.4. Key Brain Substructures

Interpreting the ASD diagnosis framework has been being a
hot topic as it may indicate the brain biomarkers of autism spec-
trum disorder and direct the early intervention. To intuitively
exhibit the pooling results, i.e., the most critical substructures
selected at that stage, we have plotted them by BrainNet Viewer
proposed by ?. We have applied graph pooling onto the brain
imaging of all subjects. Thus, for every individual, the pooling
result is six selected nodes and their connections. Subsequently,
we have split 871 subjects into different groups regarding their
non-imaging properties, including age, gender, and the data col-
lection site they belong to. We have surveyed the top 15 most
frequently selected regions and connections from the pooling
results of all subjects inside this group for each one.

Unlike figuring out universal brain biomarkers of ASD, the
outputs of self-attention pooling only have specified the impor-
tance of regions and edges of individual brain imaging. How-
ever, we can still draw some conclusions by summarizing the
pooling results in different groups. The illustrated substructures
of the brain, as shown in figure 5, may indicate a common brain
activity mechanism inside a specific group.

Ideally, as discussed in section 2.3.2, the remained regions
are the first activated ones regarding external stress or active
internal activities. They act like a trigger that has launched a
sequence of regional activities. Based on this knowledge about
model working principles, we have observed some inter-group
heterogeneity in essential substructures selected by graph pool-
ing. That finding indicates that self-attention graph pooling
along can be aware of individual phenotypic properties to some
degree. In figure 5, few differences have been found between
ASD and Typical Control subjects as the heterogeneity caused
by individual characteristics may be averaged. We further di-
vide the two groups into four by incorporating gender into con-
sideration, as shown in figure 7. According to the basic po-
sist above, we may not conclude that it is the illustrated brain
key substructures differences between different groups that have
caused ASD. But these personalized subgraphs, serving as the
inputs of MLP, are sufficient for ASD diagnosis.
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Fig. 4. Study of the impact of different brain graph initializations. The small world graph is generated based on the Watts-Strogatz model. The scale-free
graph is initialized using BA Scale-Free Network Model. The Erdős–Rényi random graph is created with probability of linking two nodes=0.3.

(a) ASD

(b) Typical Control

(c) Male

(d) Female

(e) Age >= 40

(f) Age <= 8

(g) Collected on PITT

(h) Collected on 

Max_Mun

Fig. 5. Results of individual-aware downsampling. The pooling ratio is set as 0.05, i.e., 6 regions are selected out of 111. Each axial view of the brain shows
the top 15 nodes most frequently selected from those who are inside the corresponding group. The width of edges and size of nodes indicate the relative
frequency of being selected. Number of subjects inside each group are as follows: a: 403; b: 468; c: 727; d: 144; e: 14; f: 15; g: 50; h: 46.

3.5. Efficiency of Graph Convolutional Networks
? incorporated graph convolutional networks with brain

functional connection selections and obtained accuracy im-
provement compared to ?. The classification accuracy was in-
creased from 66.80% to 70.40% by leveraging both imaging
and non-imaging information with GCN. To figure out the effi-
ciency of GCN in our framework, we have tested its efficiency
in fusing imaging and text information. As shown in figure
6, we have compared the population graph of which the edges
are built regarding the non-imaging information with a random
graph and a fully connected graph. The GCN run on the ran-

dom graph reached a mean accuracy of 53.50%, while the text-
information population graph, considering age, site, and gen-
der similarities, achieved an accuracy of 86.45%. This com-
parison proved the efficiency and importance of the provided
non-imaging data. Besides, even compared to the fully con-
nected graph, the framework run on the text-information graph
achieved better performance in some metrics. We would also
like to highlight that when the information of data collection
sites is not given, the framework can also reach a classification
accuracy of 83.24%, which indicates the feasibility of deploy-
ing the framework onto a single site.
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Fig. 6. Comparison between different population graph initializations. The four strategies are tested with the same node features.

(a) Male ASD (c) Male Typical Control

(b) Female Typical Control (d) Female ASD

Fig. 7. Additional brain view for figure 5 with same settings. The illustrated
subgraphs indicate selection preference in graph pooling.

All the previous works, which have employed GCN for the
same purpose of leveraging non-imaging information and fMRI
(???), have assumed the ability of GCN to be aware of inter-
individual phenotypic differences and to regularize raw features
based on the former. Even though the efficiency of fusing imag-
ing and non-imaging data is proved as discussed above, there is
no clear conclusion that the GCN really has learned the inter-
individual non-imaging differences. To intuitively present the
learned node embeddings, we have downsampled them onto the
2D plane with t-SNE proposed by ?. As shown in the left three

plots of figure 8, even though graph pooling has detected some
implicit inter-group heterogeneity, which is discussed in sec-
tion 3.4, the features subsequently learned by MLP have not
performed the relative feature distribution difference in respect
of phenotypic information. The inevitable information loss dur-
ing the feature dimensionality reduction may have caused this
inconsistency, as the dimension of the basic features is up to
128. Still, the node embeddings learned by Graph Convolu-
tional Networks have shown obvious clustering even in the 2D
space. As exhibited in the right three diagrams of figure 8, the
distance among subjects that are identical regarding a certain
kind of phenotypic information is relatively close in the feature
space compared to those who are not. This clustering is more
evident when only considering the genders, which indicates that
the learned edge weights of the population graph may depend
more on it.

4. Discussions

First, we have proved the superiority of the proposed self-
attention graph pooling with the current framework. As we have
highlighted that the unsupervised graph pooling has no training
cost, it is worthy of applying more models to further improve
the diagnosis accuracy and prove the efficiency of the proposed
downsampling method. Second, we have used GCN on the pop-
ulation graph to narrow the inter-site heterogeneity. It is inter-
esting to deploy federated learning in the hospitals to build sim-
ilar individual connections, which may be more practical in the
real world. In addition, the individual-aware downsampling is
different from usual fixed universal biomarkers. Personalized
brain networkings cannot directly indicate the cause of autism.
But it can provide a new way of downsampling brain imaging
and improving the model performance. For neural scientists, it
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Fig. 8. 2D view of the node embeddings learned by Graph Convolutional
Networks. The nodes, which represent subjects, are colored according to
different phenotypic properties: Sites, genders, and ages

may also indicate some brain activity patterns, as discussed in
section 3.4.

5. Conclusion

In this paper, we have proposed a framework to identify
Autism Spectrum Disorders. First, we have proposed a sim-
ple self-attention downsampling method for fMRI. This end-to-
end, unsupervised, and flexible graph pooling method has suc-
cessfully considered brain functional connections and regional
activities simultaneously, which can also be aware of individual
differences in brain function. Besides, we have exploited Graph
Convolutional Networks to incorporate imaging with pheno-
typic information and illustrated its efficiency in recalibrating
the feature distribution. Our framework has achieved a mean
accuracy of 86.45% ± 0.05 and a mean AUC of 0.93 ± 0.03
on ABIDE I dataset. The superior performance of our model
indicates its ability to detect Autism Spectrum Disorders and
contribute to early intervention.
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