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ABSTRACT
Multi-modal sensing systems are increasingly prevalent in real-
world applications such as health monitoring and autonomous driv-
ing. Most multi-modal learning approaches need to access users’
raw data, which poses significant concerns to users’ privacy. Fed-
erated learning (FL) provides a privacy-aware distributed learning
framework. However, current FL approaches have not addressed the
unique challenges of heterogeneous multi-modal FL systems, such
as modality heterogeneity and significantly longer training delay. In
this paper, we propose Harmony, a new system for heterogeneous
multi-modal federated learning. Harmony disentangles the multi-
modal network training in a novel two-stage framework, namely
modality-wise federated learning and federated fusion learning. By
integrating a novel balance-aware resource allocation mechanism
in modality-wise FL and exploiting modality biases in federated
fusion learning, Harmony improves the model accuracy under non-
i.i.d. data distributions and speeds up system convergence. We
implemented Harmony on a real-world multi-modal sensor testbed
deployed in the homes of 16 elderly subjects for Alzheimer’s Disease
monitoring. Our evaluation on the testbed and three large-scale
public datasets of different applications show that, Harmony out-
performs by up to 46.35% accuracy over state-of-the-art baselines
and saves up to 30% training delay.

CCS CONCEPTS
• Human-centered computing→Mobile computing; • Com-
puting methodologies→ Learning paradigms.
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1 INTRODUCTION
Multi-modal sensing systems are increasingly deployed in real-
world applications, such as health monitoring [34, 65], autonomous
driving [24, 49] and human-computer interaction [32]. In these sce-
narios, the tasks are usually too complex and dynamic to accomplish
based on only a single sensor modality. Incorporating information
from multiple complementary data modalities provides improved
model performance [46]. However, most existing studies on multi-
modal learning focus on centralized processing of user’s raw data
[32, 65], which imposes significant privacy concerns.

As a key enabling distributed machine learning paradigm, fed-
erated learning (FL) [25, 38] has received significant attention re-
cently, where only locally updated models (rather than raw data)
are uploaded to the server. Most of the existing FL approaches
focus on training unimodal models with only data input from a
single sensor modality, such as image [28], audio [27], or inertial
sensory data [53], which cannot be directly applied to heteroge-
neous multi-modal sensing systems. In particular, there is usually
modality heterogeneity in multi-modal FL systems, where the sensor
modalities available on different nodes vary significantly. For exam-
ple, even autonomous driving systems from the same vendors may
ship with different types/numbers of sensors, due to the diverse
vehicle models and configurations [1]. The sensors may also fail
dynamically, resulting in changing sensor modalities at runtime.
As a result, model aggregation in multi-modal FL systems will be
more challenging since the nodes with different modalities have
significantly diverse model architectures. Moreover, such modality
heterogeneity makes the model divergence between nodes much
more severe than in unimodal FL systems, affecting both the ac-
curacy and convergence of federated learning. Although several
multi-modal FL approaches [47, 60, 67] allow model training over
distributed multi-modal data on the nodes, most of them do not con-
sider the coupled modality and distribution heterogeneity among
the data of different nodes. Moreover, to the best of our knowledge,
there is no prior work on reducing the significant convergence
delay in multi-modal FL systems.

In this paper, we propose Harmony, a new system for heteroge-
neous multi-modal federated learning. Harmony adopts a modality-
agnostic approach that harnesses the modality heterogeneity in
multi-modal FL to achieve both high model accuracy and low train-
ing latency. The design of Harmony is motivated by the key ob-
servation that, directly aggregating unimodal encoders trained by
multi-modal and single-model learning results in model perfor-
mance degradation in multi-modal FL.
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The key idea of Harmony is to disentangle the training of multi-
modal networks in a novel two-stage framework, namely modality-
wise federated learning and federated fusion learning. In modality-
wise federated learning, themulti-modal nodes trainmultiple single-
modal networks rather than a single multi-modal network. As a
result, multiple unimodal FL subsystems run in parallel to consis-
tently learn unimodal information. This approach naturally reduces
the model divergence within a specific FL subsystem and can lever-
age the data of partial modalities caused by dynamic sensor failures
on multi-modal nodes. Moreover, to reduce the system training la-
tency, we propose a dynamic resource allocation mechanism, where
the multi-modal nodes dynamically allocate resources to different
single-modal training tasks to balance the delay of different uni-
modal FL systems. After modality-wise FL, the multi-modal nodes
collaboratively learn the classifier layers through federated fusion
learning. A key challenge is that the data of multi-modal nodes
usually have non-iid distributions. To address this challenge, we
design a novel federated fusion mechanism by exploiting the modal-
ity biases of different multi-modal nodes, where the server clusters
the nodes according to their modality biases for model aggrega-
tion. Based on the pre-trained feature encoders, federated fusion
learning converges fast and incurs only a small system overhead.

We deployedHarmony on a real-worldmulti-modal sensor testbed
for four continuous weeks, which consists of 16 nodes installed
in the homes of elderly subjects for Alzheimer’s Disease monitor-
ing. We show that Harmony can efficiently leverage three types
of sensors (depth cameras, mmWave radars, and microphones) to
accurately detect about a dozen of daily behaviors, despite the sub-
stantial runtime dynamics such as sensor failures. We also evaluate
the performance of Harmony on three public multi-modal datasets
from different applications that consist of samples of six different
sensor modalities and incorporate up to 210 nodes. Our extensive
evaluation shows that, Harmony significantly outperforms several
existing machine learning paradigms in model accuracy and incurs
less training latency under dynamic network conditions1.

In summary, we make the following key contributions:
• We conduct an in-depth analysis and extensive evaluations of
modality heterogeneity in multi-modal federated learning (FL)
systems, which shows the negative impact of model aggregation
between single-modal and multi-modal nodes that leads to model
performance degradation in multi-modal FL.
• Building on our key findings, we propose Harmony, the first two-
stage multi-modal FL framework that disentangles the training
of multi-modal networks to harness the modality heterogeneity
in multi-modal FL systems, improving both the model accuracy
and convergence speed.
• To further enhance the performance of our new multi-modal FL
framework, we design a new resource allocation strategy that
addresses imbalanced training delays among different nodes and
modalities, and introduce a novel federated fusion mechanism
that improves model accuracy with non-i.i.d. data distributions.
• We implemented Harmony on a real-world multi-modal sen-
sor testbed for Alzheimer’s Disease monitoring, with nodes de-
ployed in the homes of 16 elderly subjects for four weeks. Our
experiments on the testbed and three public datasets show that,

1The code is available at https://github.com/xmouyang/Harmony.

Harmony outperforms state-of-the-art baselines by up to 46.35%
accuracy and saves up to 30% system training delay.

2 RELATEDWORK
Multi-modal Learning. Multi-modal sensing systems have be-
come prevalent in real-world applications. For example, Wavoice
[31] fuses mmWave and audio signals for noise-resistant speech
recognition. Liu et al. [32] integrate RFID and depth cameras for
recognizing human gestures. Most work in this space is focused on
the centralized approach that must gather the user’s data at the cen-
tral server, which imposes significant privacy concerns. Recently,
Cosmo [42] proposes a cloud-edge multi-modal fusion framework
for activity recognition, where the models trained on the cloud can
be improved through on-device learning on the local data. However,
such an approach is not designed for collaborative model training
among different end users.

Unimodal Federated Learning. Federated Learning (FL) [25,
38] is a distributed machine learning paradigm that enables collab-
orative model training while keeping the data residing on devices.
Many FL studies are proposed to address the non-i.i.d data distribu-
tions of nodes, based on the regularized term [30], post-training [63],
or multi-task learning [43, 51]. There are also some studies focusing
on tackling the system heterogeneity in FL, such as through client
selection [29] and active sample selection [50]. However, most of
the existing FL approaches are focused on training unimodal mod-
els with only single-modality data input, such as image [28], audio
[27], or inertial sensory data[43, 53]. These approaches cannot be
directly applied in multi-modal FL since the nodes with different
modalities have significantly diverse model architectures. In con-
trast, Harmony can be applied to FL systems with heterogeneous
data modalities on the nodes.

Multi-modal Federated Learning.Multi-modal federated learn-
ing allows model training over distributed multi-modal data on
the nodes. However, the existing multi-modal FL approaches do
not consider the coupled modality and distribution heterogeneity
among the data of different nodes. For example, most of the current
approaches perform multi-modal FedAvg [47, 60, 67] that directly
averages the model weights of unimodal feature encoders from
different nodes. However, such an approach will bring a significant
performance drop when the nodes have heterogeneous modalities
or data distributions. Chen et al. [17] focus on optimizing the ag-
gregation weights among modalities and nodes in multi-modal FL.
However, their approach FedHGB needs a validation dataset on
each node and can only work for result-level multi-modal fusion.
Harmony does not need any validation datasets and is applicable
to feature-level fusion scheme, which is more general and can ex-
ploit the correlations and interactions between features of different
modalities [11]. FedMSplit [15] employs a graph structure to cap-
ture the correlations among multi-modal networks. However, their
FL framework does not consider the negative impact of aggregating
feature encoders from different types of nodes. Moreover, to the best
of our knowledge, we are the first to tackle the imbalanced training
delays among different nodes and modalities in multi-modal FL
systems, which reduces the overall system training latency.

531



Harmony: Heterogeneous Multi-Modal Federated Learning through Disentangled Model Training MobiSys ’23, June 18–22, 2023, Helsinki, Finland

Figure 1: A typical application scenario of multi-modal fed-
erated learning systems: Alzheimer’s Disease monitoring.

3 APPLICATIONS AND CHALLENGES
Harmony is designed for a wide class of applications where multi-
ple heterogeneous sensors are deployed on distributed devices for
running complex sensing tasks in a continuous and longitudinal
manner. Representative applications include autonomous driving
[49], fitness tracking [12, 13] and crowd monitoring [56].

We first briefly give two examples of the typical application
scenarios of Harmony. To provide highly robust perception per-
formance, current off-the-shelf autonomous driving cars such as
Waymo Driver [6] and Baidu Apollo [3] rely on real-time fusion
of multiple sensors, including cameras, lidars, radars, ultrasonic
sensors, and GPS. Such sensor heterogeneity is also common in
emerging smart health applications. For instance, in Alzheimer’s
patient monitoring scenarios [16, 22], multiple modalities of sensors
(e.g., cameras, microphones, and motion sensors) are required to
capture multidimensional behavior biomarkers [26], such as social
interactions and physical inactivity. In the two examples, the la-
beled data from each node is usually limited and privacy-sensitive.
As a result, the trained multi-modal models may largely suffer
overfitting issues. A promising solution to address this challenge
is federated learning among different nodes, which can improve
the model performance in ever-changing environments, such as
different road/weather conditions in autonomous driving and differ-
ent users’ daily routines and home layouts in Alzheimer’s Disease
monitoring. Next, we discuss the challenges and common practices
of FL in the context of in Alzheimer’s patient monitoring.

Figure 1 shows a multi-modal FL system for Alzheimer’s patient
monitoring [16, 22] that consists of nodes deployed in elderly sub-
jects’ homes. Each node is equipped with multiple modalities of
sensors, such as depth cameras, mmWave radars, and microphones,
to continuously track the elder’s daily behaviors. For example, the
nodes can detect the activities of daily living, behavioral and psycho-
logical symptoms of dementia [14], and social interactions, whose
duration and frequency can be used as digital biomarkers for early
AD diagnosis and intervention [2, 26]. Then, the nodes in different
subjects’ homes will transmit model weights to the central server
to collaboratively learn the multi-modal networks while preserv-
ing local data privacy. In real-world settings, such a system would
encounter many dynamics, including changing data modality and
resource availability on nodes. There are already distributed sensor
systems deployed in natural home environments for ADmonitoring

Figure 2: Two typical FL paradigms on heterogeneous multi-
modal FL systems. In UniFL, only nodes with the same data
modalities train models with FL. In MultiFL, single-modal
and multi-modal nodes collaboratively learn models by ag-
gregating feature encoders.

[7, 8, 37]. Previous FL studies have demonstrated that distributed
learning is accurate for privacy-preserving activity recognition
[43, 53], while they do not address real-world challenges in Har-
mony such as modality heterogeneity. In the following, we discuss
these challenges in detail to motivate the design of Harmony.

Modality and data heterogeneity. In Alzheimer’s patient mon-
itoring, the data modality is usually highly heterogeneous among
nodes in different subjects’ homes. Such modality heterogeneity
mainly comes from three reasons. First, due to hardware or budget
constraints, some nodes may not be equipped with multi-modal
sensors by design. Second, the deployment constraints such as en-
vironmental layout or privacy concerns can also make the installed
sensors vary among different homes. For example, some families
may not be willing to have depth cameras installed in the bedroom.
Finally, the sensors may fail dynamically due to various reasons
such as power surges. Moreover, different subjects usually exhibit
diverse behavior patterns, resulting in non-i.i.d. data distributions.
The coupled modality and data heterogeneity will bring significant
model divergence among different nodes, hence posing a major
challenge in designing efficient model aggregation approaches in
multi-modal FL systems.

Significant training latency and overhead. The distributed
nodes (e.g., mobile or edge devices) usually have very limited com-
puting resources. Compared with conventional single-modal learn-
ing, training multi-modal networks with a larger model size on
devices will incur substantially higher latency. Moreover, the wire-
less Internet connectivity of nodes will likely have limited and
varying bandwidths, resulting in dynamic communication delays
in federated learning.

4 A MOTIVATION STUDY
In this section, we evaluate the performance of current FL frame-
works on nodes with heterogeneous modalities to motivate the
design of Harmony.

Figure 2 illustrates the basic ideas of two typical FL frameworks
in heterogeneous multi-modal FL systems. In Uni-modal Federated
Learning (UniFL) [60], only nodes with the same data modalities
(either single-modal or multi-modal) collaboratively learn a model.
Therefore, each UniFL system only contains a subset of nodes. In
Multi-modal Federated Learning (MultiFL) [17, 67], all nodes (single-
modal and multi-modal) participate in the same FL system. The
server averages the unimodal feature encoders from single-modal
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Figure 3: Accuracy of dif-
ferent types of nodes in
UniFL and MultiFL.

Figure 4: Information inconsis-
tency in MultiFL.

and multi-modal nodes. Compared with UniFL, MultiFL allows
model aggregation among different types of nodes, expanding the
participants’ scale.

Specifically, we evaluate the accuracy of UniFL andMultiFL using
16 elderly subjects’ data collected by our real-world FL testbed
(see Section 7.1). The task is to classify 11 behaviors related to
Alzheimer’s Disease using the audio and depth data. We load ten
nodes with data from both modalities, three with audio data and
three with depth data only. Each experiment is repeated five times.
Figure 3 shows the model accuracy of nodes with different data
modalities trained by UniFL and MultiFL. First, both FL paradigms
have a very lowmodel accuracy on real-world heterogeneous multi-
modal data. For example, only 39%mean accuracy is achieved by the
audio model trained in UniFL. Moreover, although MultiFL enables
model aggregation among different types of nodes, the aggregated
models of both single-modal and multi-modal nodes suffer accuracy
reduction, compared with UniFL. While we only use one dataset in
this section to provide an intuitive illustration of our key findings,
we have obtained similar results on three other publicly available
datasets, as detailed in Section 8.

To find the reasons for the accuracy drop in MultiFL, we cal-
culate the cosine similarity of the unimodal encoder’s weights
from the single-modal and multi-modal networks trained on the
same data. Here a smaller cosine similarity means less common
information between the two models. The cosine similarity of en-
coders trained by single-modal and multi-modal data is 0.621 and
0.644 for audio and depth, respectively, which is relatively small.
This means that there is information inconsistency among their uni-
modal encoders. As shown in Figure 4, the multi-modal network
is trained to capture shared information among different modali-
ties, which will lose some useful unimodal information. Moreover,
the multi-modal network has a larger size of model parameters
than a single-modal network. As a result, training the multi-modal
network with limited data is more likely to encounter issues like
the curse of dimensionality [39] or model overfitting [55], which
can result in bad model performance. Therefore, directly averaging
the encoders from multi-modal and single-modal nodes in MultiFL
will have negative impacts on both sides and thus result in model
performance reduction. For instance, on “Audio-only” nodes, the
model accuracy after being aggregated with multi-modal nodes
(i.e., 29.68% in MultiFL) is lower than that in UniFL (39.06%).

Moreover, in the presence of non-i.i.d. data distributions, the
models of different multi-modal nodes may show substantial bias
toward different modalities [21, 57]. For example, in Alzheimer’s
Disease monitoring, the subjects with dementia usually have less

mobility and tend to have a sedentary lifestyle. As a result, the
prediction accuracy of their multi-modal networks may rely on
the encoder of depth images that captures the subjects’ postures.
However, cognitively normal subjects will more likely move around.
Therefore, their model accuracy may depend on the encoder of
radar data that captures human movements. As a result, directly
averaging the models of different multi-modal nodes in both UniFL
and MultiFL will yield poor accuracy.

This case study suggests two main insights. First, existing uni-
modal and multi-modal FL paradigms have unsatisfactory model
performance on real-world heterogeneous multi-modal data. Sec-
ond, compared with UniFL, the current multi-modal FL framework
(e.g., MultiFL) will suffer substantial model accuracy drops on both
single-modal and multi-modal nodes, due to the information incon-
sistency of their unimodal encoders.

5 SYSTEM OVERVIEW
We now introduce Harmony, a new system for multi-modal feder-
ated learning with heterogeneous modalities among nodes. We first
introduce the problem formulation and then describe the system
architecture.

5.1 Problem Formulation
Suppose there exist 𝑁 nodes in the multi-modal FL system. The
nodes have up to 𝑀 (𝑀 ≥ 2) different data modalities on their
local data. For an arbitrary node 𝑐𝑘 (1 ≤ 𝑘 ≤ 𝑁 ), its local training
data set is denoted as 𝐷𝑘 : {𝑠 : (X, 𝑦)}, where X = {x𝑖 |∀𝑖 ∈ M𝑘 }
contains 𝑀𝑘 = |M𝑘 | (1 ≤ 𝑀𝑘 ≤ 𝑀) modalities. Here M𝑘 ⫅
{1, 2, ..., 𝑀} is the valid data modalities on the node 𝑐𝑘 . The goal
of multi-modal federated learning is to learn a series of models
{Φ𝑘 (x𝑖 |∀𝑖 ∈ M𝑘 ) |1 ≤ 𝑘 ≤ 𝑁 } for nodes with different data modali-
tiesM𝑘 , and minimize the training latency of the whole FL system.

Single-modal networks. A single-modal node 𝑐𝑘 (𝑠) (1 ≤ 𝑘 ≤
𝑁𝑠 ) trains a single-modal network Φ𝑘 (𝑠) based on its local modality
𝑗 ∈ {1, 2, .., 𝑀}. The single-modal network is composed of the
unimodal feature encoder 𝑓𝑒𝑛𝑐 𝑗 (·) and the classifier 𝑔 𝑗 (·). We have:

Φ𝑘 (𝑠) = 𝑓𝑒𝑛𝑐 𝑗 (·) ∪ 𝑔 𝑗 (·) . (1)
Feature fusion-based multi-modal networks.Many existing

multi-modal FL solutions [17] can only work for result-level fusion
models, which cannot take advantage of low-level correlations
between the modalities. Here we consider a feature-level multi-
modal fusion network, which merges the feature representations
extracted by unimodal encoder networks of different modalities
before making the prediction. As discussed in 2, feature-level fusion
can exploit the correlation and interactions between features of
different modalities. Moreover, it is compatible with more deep
learning-based multi-modal fusion approaches as it can re-use the
pre-trained backbone model from each modality [11].

Specifically, on a multi-modal node 𝑐𝑘 (𝑚) (1 ≤ 𝑘 ≤ 𝑁𝑚) that has
𝑀𝑘 data modalities, the data of each modality will be separately fed
into the unimodal feature encoder {𝑓𝑒𝑛𝑐𝑖 (·) |∀𝑖 ∈ M𝑘 } to generate
𝑀𝑘 representation vectors:

h𝑖 = 𝑓𝑒𝑛𝑐𝑖 (x𝑖 ), 𝑖 ∈ M𝑘 , (2)

where h𝑖 ∈ R𝐷𝑖 is the hidden feature of the 𝑖𝑡ℎ sensor modality
extracted by 𝑓𝑒𝑛𝑐𝑖 (·). Here the unimodal feature encoders can be
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Figure 5: Harmony consists of two stages, i.e., modality-wise federated learning among all nodes, and federated fusion among
multi-modal nodes by exploiting the modality biases, respectively.

any off-the-shelf deep learning models (e.g., convolutional neural
network [40] or recurrent neural network [64]) depending on the
sensor modalities. This implies that our framework is general and
can be adopted in various applications.

Then the extracted unimodal features will be fused using direct
feature concatenation [62] or attention-based concatenation [35]
to combine the complementary information of different modalities.
The fused features will be input into several fully connected layers
to make the prediction. Then the fusion-based classifier in the
multi-modal network 𝑔(·) can be expressed as:

𝑦𝑝𝑟𝑒𝑑 = 𝑔(h𝑖 |∀𝑖 ∈ M𝑘 ), (3)

Then the feature fusion-based multi-modal network of the node
𝑐𝑘 (𝑚) can be expressed by:

Φ𝑘 (𝑚) = {𝑓𝑒𝑛𝑐𝑖 (·) |∀𝑖 ∈ M𝑘 } ∪ 𝑔(·) . (4)

Although the multi-modal and single-modal networks have dif-
ferent model architectures, the modality-specific feature encoders
share the same structure among the nodes that contain the same
data modalities. Therefore, the server in multi-modal FL systems
can merge the information of single-modal and multi-modal nodes
by properly aggregating the unimodal feature encoders.

5.2 System Architecture
The design of Harmony is motivated by the key insights from Sec-
tion 4 that, directly aggregating feature encoders trained by multi-
modal and single-modal networks will result in model performance
degradation on both sides. Therefore, our key idea is to disentangle
the multi-modal training into a novel two-stage framework, namely
modality-wise federated learning and federated fusion learning. Fig-
ure 5 shows the overall system architecture of Harmony. In the
following, we refer to the collection of nodes that perform the same
single-modal network training as a unimodal FL subsystem.

In modality-wise federated learning, the multi-modal nodes train
multiple single-modal networks rather than a single multi-modal
fusion network. Therefore, this stage runs multiple unimodal FL
subsystems in parallel, where all nodes consistently learn unimodal
information. Such a scheme naturally reduces the model divergence

within a specific FL subsystem and improves themodel performance
of single-modal nodes. This stage will also converge faster than
conventional multi-modal FL systems, since each unimodal FL sub-
system will involve fewer nodes with homogeneous data modalities.
As the multi-modal nodes will participate in multiple unimodal FL
subsystems, we propose to dynamically optimize the resource uti-
lization of multi-modal nodes to different single-model training
tasks. In particular, the multi-modal nodes will allocate more com-
puting resources to the modalities whose unimodal FL subsystems
take longer to aggregate models in a single training round. Such a
scheme will balance the delays of different unimodal FL subsystems
and hence speed up the overall system convergence.

In federated fusion learning, only multi-modal nodes will collab-
oratively train the classifier layers, which is challenging when the
nodes have non-i.i.d data distribution. As shown in Section 4, the
model performance of different multi-modal nodes may rely on
different modalities. We design a novel federated fusion mecha-
nism that measures and exploits the modality biases of different
multi-modal nodes in the aggregation of classifiers. Specifically, all
multi-modal nodes will initialize the feature encoders using model
weights trained inmodality-wise FL and then fine-tune them. There-
fore, the pre-trained encoders serve as a benchmark to quantify
the discrepancy of unimodal encoders during local fusion, which
essentially reflects the modality bias of local data. This is a unique
advantage brought by our two-stage training framework and can
be used to assist the aggregation of classifiers. In particular, the
server will cluster the nodes according to their modality biases
and aggregates the classifiers in each cluster, where the nodes with
similar modality biases will be in a cluster. Based on the pre-trained
feature encoders, federated fusion learning will converge fast and
incur low system overhead.

After the two-stage training, the server in Harmony will send
both multi-modal and single-modal models to all nodes. Therefore,
the nodes can select either multi-modal or single-modal models
during inference, according to the modality of their local data over
time. This feature allows Harmony to adapt to runtime dynamics
such as sensor failures. For instance, in Alzheimer’s patients moni-
toring, when the mmWave radar fails (e.g., due to power surges or
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unstable sensor connection), the nodes can still utilize the depth
sensor for behavior analysis based on the single-modal network.

6 DESIGN OF HARMONY
The design of Harmony is motivated by the key observation that,
directly aggregating the unimodal encoders trained by multi-modal
fusion networks and single-modal networks will result in model
performance degradation on both sides. Therefore, we propose
to disentangle the training of multi-modal networks in a novel
two-stage framework, namely modality-wise federated learning and
federated fusion learning.

6.1 Modality-Wise Federated Learning
In modality-wise FL, all nodes in the system will collaboratively
train single-modal networks of different data modalities. The fea-
ture encoders of the trained single-modal networks can then be
reused by multi-modal nodes in federated fusion learning. We will
first introduce the federated learning framework and then present
how to speed up the system convergence through resource alloca-
tion of the multi-modal nodes.

6.1.1 Disentangled Model Training. As shown in Section 4, directly
aggregating the feature encoders trained by multi-modal and single-
modal learning will result in model performance degradation on
both sides. Therefore, instead of performing local fusion on the
multi-modal nodes before model aggregation with single-modal
nodes, we propose to disentangle the training of feature encoders
{𝑓𝑒𝑛𝑐𝑖 (·) |∀𝑖 ∈ {1, ..., 𝑀}} and the classifier 𝑔(·) into two stages.

As shown in Figure 5, inmodality-wise FL, themulti-modal nodes
will train multiple single-modal networks rather than multi-modal
fusion networks. For example, for a multi-modal node 𝑐𝑘 (𝑚) (1 ≤
𝑘 ≤ 𝑁𝑚) with𝑀𝑘 different modalities, it will train total𝑀𝑘 different
single-modal networks:

Φ̃𝑘 (·) = {Φ𝑘 (𝑠𝑖 ) |∀𝑖 ∈ M𝑘 }, (5)

Here Φ𝑘 (𝑠𝑖 ) = 𝑓𝑒𝑛𝑐𝑖 (·) ∪𝑔𝑖 (·) denotes the single-modal network of
modality 𝑠𝑖 . Moreover, a single-modality node 𝑐𝑘 (𝑠) will still train a
single-modal network Φ𝑘 (𝑠) with the architecture shown in Eq. (1).

Through disentangled model training, the multi-modal nodes
can capture more modality-specific useful information, while some
of it would be lost during multi-modal fusion learning. Moreover,
multi-modal networks have a larger size of model parameters and
are likely to overfit on local training data [55]. In contrast, the
feature encoders trained by different single-modal networks will
have better generalization ability, which can be reused in federated
fusion learning. Finally, such a scheme is more robust for practical
scenarios where the data modalities on nodes change over time
due to dynamic sensor failure. In this case, the multi-modal nodes
in Harmony can still leverage data with partial modalities to train
single-modal networks.

6.1.2 Parallel Unimodal Federated Learning. After disentangling
the training of multi-model models, all nodes will train and upload
single-modal networks in modality-wise FL. Therefore, there will
be multiple unimodal FL subsystems running in parallel. At the
(𝑟 + 1)-th communication round, the procedures of node update
and server update are as follows.

• Node Update: The node 𝑐𝑘 will parallelly optimize (e.g., using
gradient descent methods) the model weight of 𝑀𝑘 single-
modal networks based on its local data ({x𝑖 |∀𝑖 ∈ M𝑘 }, 𝑦).

Φ𝑟+1
𝑘
(𝑠𝑖 ) ← SGD(Φ𝑟

𝑘
(𝑠𝑖 ), (x(𝑖), y)), 𝑖 ∈ M𝑘 . (6)

• Server Update: The server will run𝑀 different threads for
handling the model aggregation of different unimodal FL sub-
systems. For modality 𝑗 ∈ {1, 2, ..., 𝑀}, if the model weights
of all nodes (where there are 𝑁 𝑗 nodes that have the data of
modality 𝑗 ) have arrived at the server, the server will perform
the model aggregation as:

Φ
𝑟+1 (𝑠 𝑗 ) = 𝑈𝑛𝑖𝐹𝐿(Φ𝑟+11 (𝑠 𝑗 ), ...,Φ

𝑟+1
𝑁𝑖
(𝑠 𝑗 )). (7)

Here the aggregation approach “UniFL(·)” can be any existing FL
algorithms that aim to generate a single global model (e.g., FedAvg
[38] or FedProx [30]). Therefore, the modality-wise FL of Harmony
can be integrated with many state-of-the-art FL algorithms to fur-
ther improve the model performance in the presence of non-i.i.d.
data distribution among nodes.

Through modality-wise federated learning, the feature encoders
are trained to consistently extract unimodal information. This will
naturally harness the modality heterogeneity in a multi-modal FL
system, since it eliminates the negative impact of aggregating the
encoders trained by single-modal and multi-modal learning. More-
over, the unimodal encoders are trained on all distributed data of the
corresponding modalities, which will have a better generalization
ability. Finally, this stage will converge faster than conventional
multi-modal FL systems. This is because each unimodal FL subsys-
tem will involve fewer nodes with homogeneous data modalities,
significantly reducing the global round completion time.

6.1.3 Balance-Aware Resource Allocation. In this section, we design
a novel resource allocation mechanism for multi-modal nodes that
balances the training delays of different modalities and nodes to
reduce the overall system latency of modality-wise FL.

Basically, the overall delay of a FL system consists of three parts:
the computing time of on-device model training, the communica-
tion time of model transmission, and the waiting time of synchro-
nizing all nodes for model aggregation. In multi-modal FL systems,
the models on nodes with different modalities usually have various
convergence speeds and model sizes [55], resulting in highly hetero-
geneous computing and communication delays. Moreover, resource
availability usually suffers significant dynamics in mobile and edge
systems, making it challenging to reduce the overall system delay.

In Harmony, the multi-modal nodes train multiple single-modal
networks in parallel and will likely be the bottleneck of the system
convergence. However, thanks to the disentangled model training,
the multi-modal nodes can coordinate the convergence of different
unimodal FL subsystems. For example, as shown in Figure 6, the
multi-modal nodes run two processes for single-modal training of
audio and depth data, respectively. Due to different model sizes and
input data dimensions, the processes of the two modalities take
different times, e.g., 15s for depth and 7.5s for audio on Node 1.
Moreover, the training and communication delays of Node 1 and
Node 2 are also different due to diverse resource availabilities. As
a result, the unimodal FL subsystems of depth and audio have im-
balanced convergence latencies. Such imbalance can lead to higher
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Figure 6: An example of imbalanced delays among local
single-modal training processes and global unimodal FL sub-
systems. The delay imbalance prolongs the overall system
convergence.

overall system latency, which is determined by the slowest subsys-
tem (i.e., depth images). Therefore, in order to reduce the overall
system delay, our key idea is to optimize the resource allocation
of different multi-modal nodes to tackle the imbalanced training
delays among different nodes and modalities.

Resource allocation for multi-modal nodes.Motivated by
the aforementioned example, our objective is to dynamically com-
pute a resource ratio vector that accounts for imbalanced delays,
thereby enabling balance-aware resource allocation on multi-modal
nodes to reduce the overall system delay. This is achieved by factor-
ing in two key considerations when calculating the ratio vector for
each multi-modal node: the convergence performance of different
unimodal FL subsystems (inter-modality balance), and the local re-
sources available to each node (intra-modality node performance).

To quantify the convergence performance, in each round, the
server will measure the round completion time of each FL subsys-
tem 𝑇 𝑖 for modality 𝑖 ≤ (1 ≤ 𝑖 ≤ 𝑀) and of in the subsystem (e.g.,
𝑡𝑖
𝑘
for the 𝑘-th node in modality 𝑖’s subsystem). Based on the delay

measurements, the server then calculates the resource ratio vectors
𝛽k = [𝛽𝑖

𝑘
, ..., 𝛽𝑀

𝑘
], 1 ≤ 𝑘 ≤ 𝑁𝑚 for single-modal training tasks on

different multi-modal nodes. Specifically, on a multi-modal node
𝑐𝑘 (𝑚), the resource allocated to modality 𝑖’s single-modal training
should account for the following two aspects: (1) Inter-modality
balance: the rank of round completion time of modality 𝑖’s FL sub-
system among all modalities; (2) Intra-modality node performance:
the rank of node 𝑐𝑘 (𝑚)’s round completion time among all nodes
with modality 𝑖 . Thus, the ratio value 𝛽𝑘 can be calculated by:

𝛽𝑖
𝑘
=

𝑇 𝑖∑𝑀
𝑖=1𝑇

𝑖
·

𝑡𝑖
𝑘∑𝑁𝑖

𝑘=1 𝑡
𝑖
𝑘
/𝑁𝑖

, 𝑖 = 1, ..., 𝑀, (8)

where the left part quantifies the convergence performance of
modality 𝑖 over all subsystems, and the right part compares the
model updating efficiency of node 𝑐𝑘 (𝑚) with the average of all
nodes. Then the server will normalize the ratio vector 𝛽𝑘 and send
it to the corresponding multi-modal node 𝑐𝑘 (𝑚). Therefore, the
resource ratio vectors are customized for nodes with different local
resources and training tasks. Through reallocating the computing
resources to different unimodal training tasks, the convergence de-
lays of the different unimodal FL subsystems will be more balanced,
thus reducing the overall system delay.

Local execution with assigned ratio. After receiving the ratio
vector, each node then re-allocates its local computing resource
proportionally among all local modalities. Our ratio-based resource
allocation scheme can be implemented by using various existing
resource scheduling algorithms. For example, based on the ratio
vector, a multi-modal node can assign the numbers of CPU/GPU
cores or set the time slices to different single-modal training tasks.
In our implementation, we use priority-based scheduling with time
slicing, where a multi-modal node will set the priority and time
slices (i.e., execution time) for different tasks according to the re-
ceived resource ratios. Moreover, if a modality finishes one round
of local model training earlier, its training task will sleep to free its
remaining resources to the single-model training of other modal-
ities, thus fully utilizing the computing resources on devices. We
now revisit the example in Figure 6 to show how our design reduces
the overall system delay. By calculating the resource ratio vectors
with the measured delays and Equation (8), the two multi-modal
nodes (especially Node 2) will allocate more computing resources
to the single-modal training task of depth images. As a result, the
convergence delays of the two unimodal FL subsystems will be
more similar, thus reducing the overall system delay.

6.2 Exploiting Modality Bias in Federated
Fusion

In federated fusion learning, the multi-modal nodes collaboratively
train the classifiers that fuse the unimodal features and make predic-
tions based on the fused features. However, aggregating the classi-
fiers of multi-modal nodes is challenging in the presence of non-i.i.d
data distributions. We design a novel federated fusion mechanism
that exploits the modality biases of different multi-modal nodes to
improve the model performance.

6.2.1 Measuring Modality Bias via Encoder Discrepancy. As intro-
duced in Section 4, themulti-modal networks of different nodesmay
show substantial bias toward different modalities. We propose to
measure and leverage such modality biases in different multi-modal
networks to address the data non-i.i.d problem.

The key idea is to quantify the modality biases of different multi-
modal nodes using the discrepancy of their unimodal encoders dur-
ing local fusion. In particular, all multi-modal nodes will initialize
the feature encoders using model weights trained in modality-wise
FL and then fine-tune them. In other words, the pre-trained uni-
modal encoders are the starting points of multi-modal learning,
which serves as a benchmark for all nodes in federated fusion. As a
result, the discrepancy of unimodal encoders during local fusion
essentially reflects the data modality biases of different nodes.

Specifically, at the 𝑟 -th communication round in federated fusion
learning, the multi-modal nodes will calculate the cosine distance
between the model weights of current encoders (after local fusion
learning) and the initial benchmark encoders. For modality 𝑖 in
node 𝑐𝑘 (𝑚), the encoder discrepancy is calculated by:

𝑑𝑟
𝑘
(𝑖) = 𝑑𝑖𝑠 (𝑓 𝑟

𝑘,𝑒𝑛𝑐𝑖
(·), 𝑓 0𝑒𝑛𝑐𝑖 (·)) . (9)

Here 𝑑𝑖𝑠 (·) measures the cosine distance of two weight vectors.
Then the node 𝑐𝑘 (𝑚) will send the encoder discrepancy vector
d𝑟
𝑘
= [𝑑𝑟

𝑘
(𝑖), ..., 𝑑𝑟

𝑘
(𝑀𝑘 )] to the server.
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6.2.2 Cluster-based Fusion Aggregation. After receiving the en-
coder discrepancy vectors and model weights of classifiers from all
multi-modal nodes, the server will cluster the nodes according to
their modality biases and aggregate the classifier layers with each
cluster. In contrast to uni-modal FL studies that cluster nodes based
on the entire model parameters [43, 44], we utilize the modality
bias of multi-modal nodes as the clustering metric for the following
reasons. First, the data modality biases (i.e., the difference in uni-
modal encoders during local fusion) essentially reflect the non-i.i.d.
data distributions of different multi-modal nodes, making it easier
for clustering than using the entire multi-modal networks [43]. Ad-
ditionally, this approach significantly reduces the communication
delay since the modality biases can be calculated locally such that
only the classifier needs to be transmitted.

Specifically, the server will first normalize the encoder discrep-
ancy value of each modality among all nodes. For the modality 𝑖 of
the 𝑘-th multi-modal node:

𝑑𝑟
𝑘
(𝑖) =

𝑑𝑟
𝑘
(𝑖)

max{𝑑𝑟1 (𝑖), ..., 𝑑
𝑟
𝑁𝑞
(𝑖)} , 𝑘 = 1, ..., 𝑁𝑞 . (10)

Then each node will have a normalized vector of encoder discrep-
ancy d𝑟

𝑘
∈ R𝑀𝑞 . According to the normalized encoder discrepancy

vectors {d𝑟1, ..., d
𝑟
𝑁𝑞
}, the server will group the 𝑁𝑞 nodes to 𝐾𝑞 dif-

ferent clusters using 𝐾-means [18]. Figure 7 visualizes an example
of the normalized encoder discrepancy values among multi-modal
nodes on the MHAD dataset [41], where the accelerometer (Acc)
and skeleton data are used. It is shown that the nodes form different
clusters on the 2D space of the encoder discrepancy of Acc and
skeleton. When setting the number of clusters in 𝐾-means as three,
we can easily obtain the clustering result of the six multi-modal
nodes as [[0,1,4,5], [2], [3]].

The number of clusters 𝐾 in the 𝐾-means clustering can be
determined based on some prior knowledge of the major types of
nodes in FL. For example, in the evaluation of Alzheimer’s Disease
monitoring, we set 𝐾 = 3 as there are mainly three groups of users
(i.e., with AD, with mild cognitive impairment, and cognitively
normal). On the other hand, if we do not have such prior knowledge,
𝐾 can be decided based on numerical analysis results. Specifically,
we can gather the encoder discrepancy vector of all nodes {d𝑟

𝑖
∈

R𝑀𝑞 ,∀𝑖 = 1, ..., 𝑁𝑞} as a matrix D ∈ R𝑀𝑞×𝑁𝑞 and perform singular
value decomposition [19] on the matrix D. Then 𝐾 can be set as
the number of dominant singular values of D. For example, we can
set 𝐾 = 3 if the singular values are [100, 50, 30, 1, 0.5, 0.1, 0].

Next, the server will aggregate the classifiers of multi-modal
nodes within the same cluster. Federated fusion among the same
group can leverage existing FL algorithms that train a single global
model, where we use FedAvg [38] unless otherwise specified.

Reducing Communication Overhead. Federated fusion learn-
ing will incur only a small system overhead due to the following
reasons. First, based on the unimodal feature encoders trained in
modality-wise FL, the local training of multi-modal networks will
converge fast. Second, the multi-modal nodes will only transmit the
model updates of classifier layers and encoder discrepancy vectors
to the server, resulting in small communication latency. Third, the
number of involved nodes (only multi-modal nodes) in federated

Figure 7: Visualization of encoder discrepancy vectors of
multi-modal nodes. The nodes are grouped into three clusters
based on the encoder discrepancy.

fusion learning is much smaller than in the original multi-modal
FL system, significantly reducing the overall convergence latency.

7 REAL-WORLD TESTBED
EVALUATION

7.1 Real-World FL Testbed
We implemented Harmony on a real-world multi-modal sensor sys-
tem deployed in homes of elderly subjects2. The system is designed
to classify multi-dimension digital biomarkers (e.g., Activities of
Daily Living, Behavioral and Psychological Symptoms of Dementia
[14], motor functions, and cognition) for early diagnosis and inter-
vention of Alzheimer’s Disease. Figure 8 shows the overview of our
multi-modal testbed.

The testbed consists of 16 sensor nodes installed in participants’
homes and a central server located in our lab. We developed a com-
pact hardware system, which incorporates three privacy-preserving
sensors (a depth camera, a mmWave radar, and a microphone), an
NVIDIA Xavier NX single-board edge computer [4] with 1TB exter-
nal NVMe SSD, and a 4G cellular interface to communicate with the
lab server. The nodes can collect and store multi-modal data, train
deep learning models locally, and communicate with the server for
federated learning. We choose the three sensor modalities to col-
lectively capture a wide range of biomarkers while preserving the
users’ privacy. In particular, the depth camera can detect context-
aware activities like cleaning living areas and moving in/out of
chairs, but cannot reveal sensitive personal information like faces.
The mmWave radar can capture motion-related activities like walk-
ing, standing, and sleeping. The ambient microphones can help
detect acoustic-related activities like eating, drinking, and phone
calls without recording raw acoustic data. The NVIDIA Xavier NX
edge device (6-core ARM CPU and 84-core GPU, 16GB Memory)
runs Ubuntu 18.04, and the lab server (Intel Core i5-12400 CPU,
RTX3060 GPU, 32 G Memory) runs Ubuntu 22.04. The sensor data
sampling and machine learning models are implemented using
Python 3. In order to capture the main living area and reduce the
domain gap of different subjects’ data, we put the node at a height
of 1.5m-1.8m in the living room (typically on the shelf or cabinet
around the sofa), and used a tripod to adjust the height and angle
of the box. The area of the subjects’ living room is 10𝑚2-25𝑚2.
Harmony runs on these nodes continuously for four weeks.

2All the data collection was approved by IRB and the Clinical Research Ethics Com-
mittee of the authors’ institution.
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(a) Our multi-sensor hardware prototype. (b) Home installations. (c) Examples of recorded multi-modal data.
Figure 8: Our real-world multi-modal sensor testbed for Alzheimer’s Disease monitoring. The nodes incorporating three sensor
modalities (depth, mmWave radar, and audio) are deployed in the homes of 16 elderly subjects.

7.2 Human Subjects and Data
The deployed system detects behaviors that are shown to be highly
related to Alzheimer’s Disease from the medical literature. A total
of 16 elder subjects (eight females and eight males, 62-80 years old)
have participated in our study, including six with Alzheimer’s Dis-
ease, six with mild cognitive impairment (MCI) and four cognitively
normal subjects. The subjects live alone or with their families, and
follow their usual daily routines during the period of four continu-
ous weeks. The activity distributions of different subjects are highly
heterogeneous. First, AD patients usually have less mobility and
tend to have a sedentary lifestyle compared with cognitively normal
subjects. For example, AD subjects spend more time on basic living
activities like sitting, standing, and sleeping. Second, cognitively
normal and MCI subjects exhibit more diverse activities than AD
subjects. For example, the average number of occurred activities
in AD, MCI, and cognitively normal subjects is 6.85, 8.75, and 9,
respectively, which shows the decline in cognitive and functional
ability during the progression of AD [33].

To reduce the energy consumption and storage overhead, the
sensors will go to sleep when there is little user activity. In total,
the 16 nodes collected 10,752 hours of multi-modal sensor data,
with a total size of 16TB. The multi-modal data are synchronized
using the system clock and annotated using depth videos. This is
because depth video is easier for humans to annotate and has a
smaller sensing range compared to mmWave radar and microphone
[58, 59]. We removed the data samples where the subjects are out of
the range of the depth camera in the evaluation.Finally, we focused
on the data recorded from 6 am to 12 am of one day, and obtained
about 96 hours of labeled multi-modal data (some with only partial
modalities). The sampling rates of the depth camera, mmWave
radar, and microphone are 15 Hz, 20 Hz, and 44,100 Hz, respectively.
We split the sensor data into 2-second samples and converted them
into a fixed dimension, i.e., [16,112,112], [20,2,16,32,16], and [20,87]
for depth, radar, and audio data, respectively. We discarded the
classes that have very limited samples from most of the subjects,
and the remaining data fall into 11 classes, including cleaning the
living area, taking medication, using mobile phones, writing, sitting,
standing, moving in/out of chair/bed, walking, sleeping, eating,
and drinking. These activities are shown to be highly related to
Alzheimer’s Disease in the medical literature [9, 36, 48] and can
be detected in home environments. The duration and frequency
of these activities can be used as potential digital biomarkers for
diagnostic analysis of AD [2, 7, 8]. Finally, the number of labeled
samples on the nodes is in [1141, 6498], and the total number of
labeled samples is about 60,000.

Sensor combination
Set 1 2A, 2D, 2R, 10(A,D,R)
Set 2 2(A,D), 2(D,R), 2(A,R), 10(A,D,R)
Set 3 1A, 1D, 1R, 2(A,D), 2(D,R), 2(A,R), 7(A,D,R)

Table 1: Selected sensor combinations on 16 nodes. A, D, R de-
notes Audio, Depth, Radar, respectively, and 7(A,D,R) means
seven nodes having three modalities.

7.3 Results on Real-World Testbed
7.3.1 Evaluation metrics and configurations. We evaluate the sys-
tem accuracy of behavior recognition and the wall clock time for
the whole FL system to achieve convergence. Our baselines include
local learning, UniFL, MultiFL (introduced in Section 4), and Fed-
HGB [17]. In FedHGB, the nodes use a validation dataset to measure
the overfitting-to-generalization rate, according to which the server
computes the aggregation weights among modalities and nodes.
The reasons why we choose these baselines are as follows. First,
existing multi-modal FL approaches such as MultiFL [60, 67] used
as our baseline that can work with feature-level fusion are largely
based on Fedavg. Second, although FedHGB can only be applied
for result-level fusion, it is a state-of-the-art approach that aims
to address the non-i.i.d problem under modality heterogeneity in
multi-modal FL, thus serving as a strong baseline.

During the modality-wise FL of Harmony, we adopt different
processes on multi-modal nodes for different single-modal training
tasks. The server calculates the resource ratio vectors for different
nodes in each communication round according to our design in Sec-
tion 6.1.3 and sends them to the nodes. Then the multi-modal nodes
will dynamically allocate CPU and GPU time slices to different
processes using priority-based time slicing scheduling [45].

7.3.2 System Accuracy. In this section, we investigate the charac-
teristics of the real-world multi-modal data collected by our testbed
and evaluate the system accuracy of Harmony.

Dynamics of sensor modalities. In our testbed, the sensors
may stop data recording occasionally due to the system dynamics,
such as power surges or unstable sensor connections. We use the
systemd service [5] of Linux to restart the sensors in case of sensor
faults. As a result, the number of working sensors changes over time
as well as across different nodes. We sample the status of sensors
every hour during the four weeks, and then average the results
of 16 nodes. On a specific node, the mean probability of having
three, two, one and zero working sensors are 95.82%, 3.41%, 0.37%
and 0.02%, respectively. Thanks to the disentangled multi-modal
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(a) Different modality sets. (b) Different amounts of data.
Figure 9: Accuracy performance on real-world multi-modal
data. Harmony outperforms by 20% in mean accuracy over
the baselines under various settings.

Figure 10: Dynamics of resources on the nodes.

training, Harmony can leverage the data of partial modalities on
multi-modal nodes, which is robust to runtime system dynamics
such as sensor failures.

Accuracy of different modality combinations. Due to the
system dynamics, the data modalities currently available on a given
node may have various combinations. We select three represen-
tative sensor combinations (shown in Table 1) for the 16 nodes
and evaluate the accuracy of Harmony under these settings. Figure
9a shows the accuracy when each node only has 50 labeled train-
ing samples. Harmony delivers significant accuracy improvement
over the state-of-the-art baselines across different settings of sensor
combinations. For example, in Set 3, Harmony outperforms 22.96%,
14.33%, 18.48%, and 16.65% over local learning, UniFL, MultiFL and
FedHGB, respectively.

Performance with different amounts of local data. We fur-
ther evaluate the performance of Harmony with different amounts
of local training data. As shown in Figure 9b, when there are more
local training samples, generally, the accuracy of all approaches
increases. However, due to the modality and data heterogeneity,
UniFL, MultiFL and FedHGB only have little accuracy improvement
or even perform worse than local learning. Harmony consistently
outperforms the baselines with different amounts of training data,
by effectively exploiting the heterogeneous data across the nodes.
For example, Harmony achieves over 70% accuracy with only 100
training samples on nodes.

7.3.3 System Overhead. We then evaluate the system overhead of
Harmony on our testbed under various resource dynamics.

Dynamic compute and communication resource availabil-
ity. A key challenge addressed in the design of Harmony is the
significant resource dynamics of nodes in real-world FL systems.

Figure 11: System latency of different FL solutions.

Figure 10 plots the CPU/GPU usage and bandwidth of a multi-modal
node over 20 continuous hours. After the multi-modal sensor data
recording starts, the available computing resources change over
time. When the node starts to run real-time federated learning, the
GPU usage nearly approaches 100%. Moreover, over the 20 hours,
both the uplink and downlink bandwidth of the 4G LTE networks
fluctuate in a significant dynamic range (e.g., 0-20 Mbps).

System training latency. Figure 11 compares the mean training
latency of different types of nodes in MultiFL and the modality-
wise FL of Harmony. In MultiFL (left figure), the multi-modal nodes
(MM) have the highest computing delay. Consequently, the single-
modal nodes (Audio, Depth, Radar) incur a long waiting time for
global model aggregation. In Harmony without resource alloca-
tion in Section 6.1.3 (middle figure), the multi-modal node runs the
process of single-modal training of audio, depth, and radar in a
round-robin manner. As a result, the audio model with the smallest
training workload finishes unimodal FL first, followed by the radar
and depth model. In Harmony (right figure), thanks to the balance-
aware resource allocation design, the multi-modal nodes allocate
more computing resources (i.e., the highest priority and largest ratio
of time slice) to depth’s unimodal training, which converges first.
Then the freed resources will be used by the radar and audio model,
which converges subsequently. As a result, the modality-wise FL
of Harmony converges faster than MultiFL. Furthermore, based on
the pre-trained unimodal encoders, federated fusion learning in
Harmony only takes 235s to converge, which is a fraction of 3.2%
delay of modality-wise FL. Therefore, the two-stage training frame-
work and resource allocation design of Harmony together reduce
the overall latency in heterogeneous multi-modal FL systems.

8 EVALUATION ON PUBLIC DATASETS
8.1 Datasets
USC dataset [66]. This dataset comprises data of a 3-axis accelera-
tor and 3-axis gyroscope from 14 users performing 12 activities. The
sampling rate of the two sensors is 100 Hz. We choose a 2-second
time window that generates a 600-dimensional vector for data of
each modality. We set the data of different subjects to different
nodes, where eight with data of both modalities, three with only
accelerometer data, and three with only gyroscope data.

MHAD dataset [41]. This dataset contains data of 11 human
actions collected from 12 subjects. Due to the small amount of data
from each subject, we use the 3-axis accelerometer and skeleton
data with a relatively low dimension to avoid model overfitting.
We resample the data of both modalities to 30 Hz, and each frame
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(a) USC (b) MHAD (c) FLASH
Figure 12: Comparison of accuracy performance on different multi-modal datasets. Harmony consistently outperforms the
state-of-the-art baselines for nodes with different data modalities.

Dataset Modality Class Node Samples
USC Acc, Gyro 12 14 38312

MHAD Acc, Skeleton 11 12 3956
FLASH GPS, LiDar, Camera 64 210 32923
Table 2: Summary of the three multi-modal datasets.

of multi-modal data consists of 3-D accelerometer data and 35×3-
dimensional skeletal points. We choose a sliding time window of
2s to generate around 330 samples per subject. We assign six nodes
with data from both modalities, three with only accelerometer data
and three with only skeleton data.

FLASHdataset [47].This dataset comprises data of GPS, LiDAR,
and cameras collected using autonomous cars at 10 Hz. The task
is to select the high-band sector for mmWave beamforming in
mobile V2X communication scenarios. Each sample contains a
64-dimensional RF ground truth and synchronized multi-modal
sensor data, with the dimension [1,2], [20,20,20], and [3,360,640] for
GPS, LiDAR, and image, respectively. To evaluate the scalability of
Harmony, we assign the data from different vehicles and scenarios
to different nodes and divide the whole dataset into 210 nodes. The
number of nodes is proportionally set as 4:2:2:2 for the nodes with
multi-modal, GPS, Lidar and image data, respectively.

8.2 Implementation
To evaluate the scalability of Harmony, we set up more nodes on a
computing cluster consisting of eight powerful but heterogeneous
machines. Each machine contains four GPU cores and 16/32 CPU
cores. We assign different CPU cores to nodes on the same machine
and let each GPU run multiple nodes to incorporate up to 210 nodes.
We use CNN layers to extract deep features, RNN layers to capture
the time-series properties, and two fully-connected layers for the
classifier. For the unimodal feature encoders, we adopt 2D-CNN for
the inertial/GPS data, 3D-CNN for the skeleton, Lidar and image
data. The learning rate and batch size are set as 0.001 and 16 for
Harmony and the baselines. Each experiment is repeated five times.

8.3 Overall Performance
In this section, our evaluation focuses on three aspects of Har-
mony, including performance on different datasets, scalability and
convergence performance.

Figure 13: Accuracywith var-
ious numbers of nodes.

Figure 14: Convergence perfor-
mance.

Accuracy on different datasets. Figure 12 plots the accuracy
of different types of nodes on the three public multi-modal datasets.
First, Harmony shows significant accuracy improvement over the
baselines on nodes with heterogeneous data modalities, e.g., out-
performs by 18.67%, 5.76%, 6.97%, and 5.3% over local learning,
UniFL, MultiFL, and FedHGB on the MHAD dataset, respectively.
Second, compared with UniFL or local learning, the single-modal
nodes in MultiFL/FedHGB generally suffer vivid accuracy drops, as
their models are aggregated with multi-modal networks. Harmony
harnesses the negative impacts through disentangled multi-modal
training. For example, on the USC dataset, Harmony improves the
mean accuracy of Acc, Gyro, and multi-modal nodes by 15.34%,
14.34%, and 19% over MultiFL.

Scalability. Figure 13 shows the accuracy performance of Har-
mony with different numbers of nodes (i.e., 30, 60, 90, 120), using
data from the FLASH dataset. Generally, when the number of nodes
increases, the variance of model accuracy among nodes in local
learning increases, which shows the heterogeneity of nodes’ data.
Moreover, the accuracy performance of FL-based approaches in-
creases with more nodes. Harmony consistently outperforms local
learning, UniFL, MultiFL, and FedHGB in model accuracy in all
configurations, demonstrating its scalability.

Convergence Performance Figure 14 shows the convergence
performance of Harmony over the training epochs on the MHAD
dataset. In modality-wise FL, the unimodal FL subsystems of Acc
and Skeleton converge at different speeds. Federated fusion learning
in Harmony converges fast and only needs about 10 to 15 epochs
of local training to achieve the highest accuracy. This is because
federated fusion learning is based on the feature encoders pre-
trained on large amounts of distributed data in modality-wise FL.
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Figure 15: Ablation study of Harmony.

8.4 Understanding Harmony’s Performance
In this section, we perform the ablation study to understand the ef-
fectiveness of Harmony. We show the results of the MHAD dataset,
and the results on the other two datasets are similar.

Integrating existing FL algorithms. We first compare the
model accuracy of all nodes when the modality-wise FL of Harmony
runs different personalized FL algorithms, including FedProx [30],
PerAvg [20] and FedPer [10]. The results are shown in Figure 15(a).
We observe that integrating personalized FL algorithms in modality-
wise FL does not always improve the model accuracy of all nodes.
For example, running Fedper in the modality-wise FL (Uni-Fedper)
introduces an accuracy drop to some nodes. This is because the
multi-modal nodes reuse the feature encoders trained in modality-
wise FL, where more personalized encoders may not have good
adaptation performance in federated fusion learning.

Effectiveness of federated fusion learning. To show the effec-
tiveness of our federated fusion mechanism, we compare the model
accuracy of multi-modal nodes when their classifiers are trained
by different schemes, including local fusion, FedAvg, federated fu-
sion learning of Harmony, and centralized fusion. We initialize the
modal weights of encoders using the one trained in modality-wise
FL of Harmony. The results are shown in Figure 15(b). Compared
with local fusion and FedAvg, Harmony improves the model ac-
curacy of most multi-modal nodes, and its mean accuracy even
approaches the performance of centralized fusion learning.

Comparing feature-level and result-level fusion. To un-
derstand the performance gain of our approach, we compare the
accuracy of FedHGB (only applicable to result fusion) [17], Har-
mony with result fusion, and Harmony with feature fusion. Figure
15(c) shows the model accuracy of multi-modal and single-modal
(with only accelerator data) nodes, when they run the above three
FL methods. First, when the multi-modal nodes train result-level
fusion models of different modalities, Harmony can improve model
accuracy of most nodes comparedwith FedHGB, but does not need a
validation dataset. Second, besides the result-level fusion, Harmony
can also be applied to feature-level fusion models, further improv-
ing the accuracy of multi-modal nodes. Third, the single-modal
nodes (Acc) in Harmony also have better accuracy performance
than FedHGB, thanks to the modality-wise FL in Harmony.

9 DISCUSSION
Extension to semi-supervised learning. There is usually limited
labeled data in real-world applications like Alzheimer’s Disease
monitoring, which is a key motivation for adopting FL. Although
Harmony works reasonably well with limited data, e.g., achieving
over 70% accuracy with only 100 training samples in real-world AD

monitoring, its performance can be further improved by adopting
semi-supervised learning approaches. Specifically, the modality-
wise FL in Harmony aims to train feature encoders, which does
not rely on labeled data, and thus can be easily extended with
unsupervised learning approaches that train feature encoders with
large amounts of unlabeled data. As a result, the classifiers of nodes
can be trained in federated fusion learning with only limited labeled
data. Previous studies on semi-supervised learning have shown that
the model performance can be augmented by efficiently learning
from the unlabeled multi-modal [42] or unimodal [23, 61] data.

Impact of runtime sensor dynamics. Although Harmony al-
lows the nodes to select either multi-modal or unimodal models
during inference according to their local data modality at runtime,
the system performance may vary during the switch of the in-
ference model. For example, there may be an accuracy drop when
switching tomulti-modal from unimodal models.Wewill study how
to quantify and bound such performance variation by analyzing
the information inconsistency between unimodal and multi-modal
networks. Moreover, we will also study how to leverage the multi-
modal network to improve the performance with only partial data
modalities. To this end, we will draw on cross-modal knowledge
transfer [54] or data imputation of missing modalities [52].

Dynamic sensor selection. The system efficiency of Harmony
can be further improved by exploiting different contributions or
strengths of sensor modalities. For example, in federated fusion
learning, if the discrepancy of one sensor’s unimodal encoder is
extremely small for a long period, this sensor does not actually
contribute much to the fusion performance on the data of the node’s
data. We can then turn off the sensor to save computing resources
without significantly affecting the model inference accuracy.

10 CONCLUSION
This paper proposes Harmony, a new system for heterogeneous
multi-modal federated learning. Harmony disentanglesmulti-modal
training in a novel two-stage framework, namely modality-wise
FL with dynamic resource optimization and federated fusion learn-
ing by exploiting the modality biases. Extensive experiments on
a real-world multi-modal sensor testbed and public datasets show
that Harmony significantly outperforms state-of-the-art baselines
under various system dynamics.
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[25] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. 2016.
Federated optimization: Distributed machine learning for on-device intelligence.
arXiv preprint arXiv:1610.02527 (2016).

[26] Lampros C Kourtis, Oliver B Regele, Justin M Wright, and Graham B Jones.
2019. Digital biomarkers for Alzheimer’s disease: the mobile/wearable devices
opportunity. NPJ digital medicine 2, 1 (2019), 1–9.

[27] David Leroy, Alice Coucke, Thibaut Lavril, Thibault Gisselbrecht, and Joseph
Dureau. 2019. Federated learning for keyword spotting. In ICASSP 2019-2019
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 6341–6345.

[28] Ang Li, Jingwei Sun, Pengcheng Li, Yu Pu, Hai Li, and Yiran Chen. 2021. Hermes:
an efficient federated learning framework for heterogeneous mobile clients. In
Proceedings of the 27th Annual International Conference on Mobile Computing and
Networking. 420–437.

[29] Chenning Li, Xiao Zeng, Mi Zhang, and Zhichao Cao. 2022. PyramidFL: A fine-
grained client selection framework for efficient federated learning. In Proceedings
of the 28th Annual International Conference on Mobile Computing And Networking.
158–171.

[30] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. 2020. Federated optimization in heterogeneous networks.
Proceedings of Machine Learning and Systems 2 (2020), 429–450.

[31] Tiantian Liu, Ming Gao, Feng Lin, ChaoWang, Zhongjie Ba, Jinsong Han,Wenyao
Xu, and Kui Ren. 2021. Wavoice: A noise-resistant multi-modal speech recogni-
tion system fusing mmwave and audio signals. In Proceedings of the 19th ACM
Conference on Embedded Networked Sensor Systems. 97–110.

[32] Xiulong Liu, Dongdong Liu, Jiuwu Zhang, Tao Gu, and Keqiu Li. 2021. RFID and
camera fusion for recognition of human-object interactions. In Proceedings of
the 27th Annual International Conference on Mobile Computing and Networking.
296–308.

[33] Gill Livingston, Andrew Sommerlad, Vasiliki Orgeta, Sergi G Costafreda, Jonathan
Huntley, David Ames, Clive Ballard, Sube Banerjee, Alistair Burns, Jiska Cohen-
Mansfield, et al. 2017. Dementia prevention, intervention, and care. The lancet
390, 10113 (2017), 2673–2734.

[34] Chris Xiaoxuan Lu, Muhamad Risqi U Saputra, Peijun Zhao, Yasin Almalioglu, Pe-
dro PB de Gusmao, Changhao Chen, Ke Sun, Niki Trigoni, and Andrew Markham.
2020. milliEgo: single-chip mmWave radar aided egomotion estimation via deep
sensor fusion. In Proceedings of the 18th Conference on Embedded Networked Sensor
Systems. 109–122.

[35] Haojie Ma, Wenzhong Li, Xiao Zhang, Songcheng Gao, and Sanglu Lu. 2019.
AttnSense: Multi-level Attention Mechanism For Multimodal Human Activity
Recognition.. In IJCAI. 3109–3115.

[36] Gad A Marshall, Lynn A Fairbanks, Sibel Tekin, Harry V Vinters, and Jeffrey L
Cummings. 2006. Neuropathologic correlates of activities of daily living in
Alzheimer disease. Alzheimer Disease & Associated Disorders 20, 1 (2006), 56–59.

[37] Marie Mc Carthy and P Schueler. 2019. can digital technology advance the
development of treatments for Alzheimer’s disease? The Journal of Prevention of
Alzheimer’s Disease 6, 4 (2019), 217–220.

[38] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al. 2016.
Communication-efficient learning of deep networks from decentralized data.
arXiv preprint arXiv:1602.05629 (2016).

[39] Hrushikesh Mhaskar, Qianli Liao, and Tomaso Poggio. 2017. When and why are
deep networks better than shallow ones?. In Proceedings of the AAAI conference
on artificial intelligence, Vol. 31.

[40] Sebastian Münzner, Philip Schmidt, Attila Reiss, Michael Hanselmann, Rainer
Stiefelhagen, and Robert Dürichen. 2017. CNN-based sensor fusion techniques
for multimodal human activity recognition. In Proceedings of the 2017 ACM
International Symposium on Wearable Computers. 158–165.

[41] Ferda Ofli, Rizwan Chaudhry, Gregorij Kurillo, René Vidal, and Ruzena Bajcsy.
2013. Berkeley mhad: A comprehensive multimodal human action database. In
2013 IEEE workshop on applications of computer vision (WACV). IEEE, 53–60.

[42] Xiaomin Ouyang, Xian Shuai, Jiayu Zhou, Ivy Wang Shi, Zhiyuan Xie, Guoliang
Xing, and Jianwei Huang. 2022. Cosmo: contrastive fusion learning with small
data for multimodal human activity recognition. In Proceedings of the 28th Annual
International Conference on Mobile Computing And Networking. 324–337.

[43] Xiaomin Ouyang, Zhiyuan Xie, Jiayu Zhou, Jianwei Huang, and Guoliang Xing.
2021. Clusterfl: a similarity-aware federated learning system for human activity
recognition. In Proceedings of the 19th Annual International Conference on Mobile
Systems, Applications, and Services. 54–66.

[44] Xiaomin Ouyang, Zhiyuan Xie, Jiayu Zhou, Guoliang Xing, and Jianwei Huang.
2022. ClusterFL: A Clustering-based Federated Learning System for Human
Activity Recognition. ACM Transactions on Sensor Networks 19, 1 (2022), 1–32.

[45] Ishwari Singh Rajput and Deepa Gupta. 2012. A priority based round robin CPU
scheduling algorithm for real time systems. International Journal of Innovations
in Engineering and Technology 1, 3 (2012), 1–11.

[46] Dhanesh Ramachandram and GrahamWTaylor. 2017. Deep multimodal learning:
A survey on recent advances and trends. IEEE signal processing magazine 34, 6
(2017), 96–108.

[47] Batool Salehi, Jerry Gu, Debashri Roy, and Kaushik Chowdhury. 2022. FLASH:
Federated learning for automated selection of high-band mmWave sectors. In
IEEE INFOCOM 2022-IEEE Conference on Computer Communications. IEEE, 1719–
1728.

[48] Eric Salmon*, Solange Lespagnard*, Patricia Marique, F Peeters, Karl Herholz,
Daniela Perani, Vjera Holthoff, Elke Kalbe, D Anchisi, Stéphane Adam, et al. 2005.
Cerebral metabolic correlates of four dementia scales in Alzheimer’s disease.

542

https://www.autopilotreview.com/tesla-autopilot-v1-v2-v3-and-beyond-differences/
https://www.autopilotreview.com/tesla-autopilot-v1-v2-v3-and-beyond-differences/
https://www.alzdiscovery.org/research-and-grants/funding-opportunities/diagnostics-accelerator-digital-biomarkers-program
https://www.alzdiscovery.org/research-and-grants/funding-opportunities/diagnostics-accelerator-digital-biomarkers-program
https://www.alzdiscovery.org/research-and-grants/funding-opportunities/diagnostics-accelerator-digital-biomarkers-program
https://www.apollo.auto/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://en.wikipedia.org/wiki/Systemd
https://waymo.com/waymo-driver/?ncr
https://www.ohsu.edu/collaborative-aging-research-using-technology/cart-home
https://www.ohsu.edu/collaborative-aging-research-using-technology/cart-home
https://www.alzdiscovery.org/research-and-grants/portfolio-details/21130887


MobiSys ’23, June 18–22, 2023, Helsinki, Finland X. Ouyang, Z. Xie, H. Fu, L. Pan, S. Chen, N. Ling, G. Xing, J. Zhou, J. Huang.

Journal of neurology 252 (2005), 283–290.
[49] Shuyao Shi, Jiahe Cui, Zhehao Jiang, Zhenyu Yan, Guoliang Xing, Jianwei Niu, and

Zhenchao Ouyang. 2022. VIPS: real-time perception fusion for infrastructure-
assisted autonomous driving. In Proceedings of the 28th Annual International
Conference on Mobile Computing And Networking. 133–146.

[50] Jaemin Shin, Yuanchun Li, Yunxin Liu, and Sung-Ju Lee. 2022. FedBalancer: Data
and Pace Control for Efficient Federated Learning on Heterogeneous Clients. In
International Conference on Mobile Systems, Applications and Services (MobiSys).
ACM, 436–449.

[51] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. 2017.
Federated multi-task learning. In Advances in Neural Information Processing
Systems. 4424–4434.

[52] Luan Tran, Xiaoming Liu, Jiayu Zhou, and Rong Jin. 2017. Missing modalities im-
putation via cascaded residual autoencoder. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 1405–1414.

[53] Linlin Tu, Xiaomin Ouyang, Jiayu Zhou, Yuze He, and Guoliang Xing. 2021. Feddl:
Federated learning via dynamic layer sharing for human activity recognition. In
Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems.
15–28.

[54] QiWang, Liang Zhan, Paul Thompson, and Jiayu Zhou. 2020. Multimodal learning
with incomplete modalities by knowledge distillation. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
1828–1838.

[55] Weiyao Wang, Du Tran, and Matt Feiszli. 2020. What makes training multi-
modal classification networks hard?. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 12695–12705.

[56] Fang-Jing Wu and Gürkan Solmaz. 2018. Crowdestimator: Approximating crowd
sizes with multi-modal data for internet-of-things services. In Proceedings of the
16th Annual International Conference on Mobile Systems, Applications, and Services.
337–349.

[57] Nan Wu, Stanislaw Jastrzebski, Kyunghyun Cho, and Krzysztof J Geras. 2022.
Characterizing and overcoming the greedy nature of learning in multi-modal
deep neural networks. In International Conference on Machine Learning. PMLR,
24043–24055.

[58] Zhiyuan Xie, Xiaomin Ouyang, Xiaoming Liu, and Guoliang Xing. 2021. Ultra-
Depth: Exposing high-resolution texture from depth cameras. In Proceedings of
the 19th ACM Conference on Embedded Networked Sensor Systems. 302–315.

[59] Zhiyuan Xie, Xiaomin Ouyang, Li Pan, Wenrui Lu, Xiaoming Liu, and Guoliang
Xing. 2022. HiToF: a ToF camera system for capturing high-resolution textures.
In Proceedings of the 28th Annual International Conference on Mobile Computing
And Networking. 764–765.

[60] Baochen Xiong, Xiaoshan Yang, Fan Qi, and Changsheng Xu. 2022. A unified
framework for multi-modal federated learning. Neurocomputing 480 (2022),
110–118.

[61] Huatao Xu, Pengfei Zhou, Rui Tan, Mo Li, and Guobin Shen. 2021. LIMU-BERT:
Unleashing the Potential of Unlabeled Data for IMU Sensing Applications. In
Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems.
220–233.

[62] Shuochao Yao, Shaohan Hu, Yiran Zhao, Aston Zhang, and Tarek Abdelzaher.
2017. Deepsense: A unified deep learning framework for time-series mobile
sensing data processing. In Proceedings of the 26th international conference on
world wide web. 351–360.

[63] Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov. 2020. Salvaging federated
learning by local adaptation. (2020). arXiv:2002.04758

[64] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. 2014. Recurrent neural
network regularization. arXiv preprint arXiv:1409.2329 (2014).

[65] Hanbin Zhang, Gabriel Guo, Chen Song, Chenhan Xu, Kevin Cheung, Jasleen
Alexis, Huining Li, Dongmei Li, Kun Wang, and Wenyao Xu. 2020. PDLens:
smartphone knows drug effectiveness among Parkinson’s via daily-life activity
fusion. In Proceedings of the 26th Annual International Conference on Mobile
Computing and Networking. 1–14.

[66] Mi Zhang and Alexander A Sawchuk. 2012. USC-HAD: a daily activity dataset
for ubiquitous activity recognition using wearable sensors. In Proceedings of the
2012 ACM conference on ubiquitous computing. 1036–1043.

[67] Yuchen Zhao, Payam Barnaghi, and Hamed Haddadi. 2022. Multimodal Federated
Learning on IoT Data. In 2022 IEEE/ACM Seventh International Conference on
Internet-of-Things Design and Implementation (IoTDI). IEEE, 43–54.

543

https://arxiv.org/abs/2002.04758

	Abstract
	1 Introduction
	2 Related Work
	3 Applications and Challenges
	4 A Motivation Study
	5 System Overview
	5.1 Problem Formulation
	5.2 System Architecture

	6 Design of Harmony
	6.1 Modality-Wise Federated Learning
	6.2 Exploiting Modality Bias in Federated Fusion

	7 Real-world Testbed Evaluation
	7.1 Real-World FL Testbed
	7.2 Human Subjects and Data
	7.3 Results on Real-World Testbed

	8 Evaluation on Public Datasets
	8.1 Datasets
	8.2 Implementation
	8.3 Overall Performance
	8.4 Understanding Harmony’s Performance

	9 Discussion
	10 Conclusion
	Acknowledgments
	References

